Medir la presión arterial. Historia (II)

Hemos añadido un nuevo vídeo en el canal Medicina, historia y sociedad. Así, pues, incluimos el guión del anterior, segunda parte de la historia de la medida de la presión arterial.

Después del aparato de Riva-Rocci, que vimos en el vídeo anterior, siguieron perfeccionándose este tipo de aparatos.

Por un lado mejoró el brazalete y el manguito compresor, así como el indicador de las variaciones de la pulsación arterial en el curso de las compresiones y descompresiones.

Respecto al manómetro, las preferencias se inclinaron por los metálicos mas que por los de mercurio (fácil transporte).

Respecto a los manguitos se idearon los de bolsa doble pero dispuestos como si fueran de bolsa única.

Hoy se clasifican los esfigmomanómetros de la siguiente manera:

  1. Por el metodo de insuflación del manguito: en manuales y automáticos.
  2. Por el metodo en que se visualiza el resultado: en una columna de mercurio, aneroide o análogo en una escala con aguja; y, finalmente, digital, en pantalla.
  3. Por el método de determinación de la presión sistólica y diastólica: en auscultatorio (uso de los sonidos de Korotkov) y oscilométrico.

Vamos a ver algunos de éstos:

Método oscilométrico

Oscilómetro de Pachon

Creado por Michel Victor Pachon (1867-1938) en 1909 junto con un ingeniero de la Compañía de Caminos de Hierro de París. Fabricado por la empresa Boulitte.

Las oscilaciones de presión en la arteria debajo del manguito se transfieren a un aneroide en la carcasa hermética del oscilómetro metálico. Tiene dos escalas: una para leer la amplitud de las oscilaciones (de 0 a 20) y la otra para determinar la presión arterial (de 0 a 30 cm de Hg).

Se registran primero las oscilaciones de baja amplitud, luego oscilaciones crecientes cuyo inicio corresponde a la tensión máxima, y ​​finalmente oscilaciones decrecientes cuyo inicio refleja la presión mínima o diastólica. No requiere fonendoscopio.

El brazalete empleado con este oscilómetro fue diseñado por el cardiólogo francés Louis Gallavardin (1875-1957). El manguito de presión arterial incorpora dos vejigas de goma que se inflan de forma independiente, una superpuesta a la otra.

Oscilometro de Von Recklinhausen

Recoge directamente las oscilaciones de las paredes arteriales en el mismo lugar de la compresión. La parte neumática está conectada con una pera que se utiliza para inflar el manguito y con un oscilómetro que registra de forma continua la presión.

Se abre ligeramente la válvula y al descomprimirse el manguito en el momento de aparecer las primeras oscilaciones evidentes se lee la presión sistólica. Siguen las oscilaciones crecientes y al presentarse la primera oscilación decreciente se lee la presión arterial diastólica. Para finalizar se abre completamente la válvula de la pera de goma y se desinfla el manguito

Método palpatorio

Sólo nos proporciona la tensión sistólica. Se utiliza un esfigmomanómetro. Se infla el brazalete 10 o 20 mm de Hg más que la presión sistólica estimada al desaparecer las pulsaciones de la arteria radial del canal del pulso. Después se va desinflando poco a poco el brazalete o manguito hasta que aparece el pulso radial. El valor que se lee en ese momento a través del manómetro es el correspondiente a la presión arterial sistólica.

Método auscultatorio

El esfigmotensiófono de Boulitte constan de brazalete con su manómetro y un fonendoscopio que se aplica bajo el manguito para auscultar la arteria más próxima inmediatamente por debajo del manguito; la humeral en el pliegue del codo si se coloca el brazalete en el brazo; la braquial si se utiliza el manguito antibraquial.

Con el fonendoscopio sobre la arteria braquial debajo del manguito, se insufla aire hasta el nivel máximo.  Luego se abre la pera de insuflación de forma que el mercurio descienda a razón de 2 mm por segundo. Hay que fijarse en la escala cuando se producen los sonidos de Kortokov (fase 1 a la 5). La fase 1 corresponde a la presión sistólica y la fase 5 a la diastólica.

Fase 1: aparace el sonido al desinflar el manguito

Fase 2: el ruido pierde intensidad, se escucha un soplo

Fase 3: un ruido sordo más suave

Fase 4: el sonido se va apagando progresivamente

Fase 5: se deja de escuchar el sonido

El método oscilatorio solía dar 10 mm de más y los palpatorios de 5 a 10 mm de menos.

Esfigmógrafos automáticos

Los esfigmomanómetro automáticos (denominados también digitales) pueden ser de brazalete aplicable a la muñeca, al brazo o incluso a un dedo. Cuanto más distal es el punto de medida de la tensión arterial, mayor es la influencia de la vasoconstricción periférica sobre los resultados de la medición. El funcionamiento básico de este dispositivo es similar: posee su brazalete y su manómetro; a veces incorpora un compresor eléctrico para inflar el brazalete. Contienen también una pequeña computadora que dispone de memoria y reloj. El brazalete dispone además en su interior de sensores capaces de detectar los sonidos de Korotkoff, permitiendo conocer el intervalo de presión diastólica y sistólica. 

Generalmente, este tipo de aparatos contiene un sistema auscultatorio y otro oscilométrico. El sistema auscultatorio se fundamenta en un micrófono ubicado en el brazalete y que interpreta los ruidos de Korotkoff, mientras que los dispositivos oscilométricos analizan la transmisión de vibración de la pared arterial. No requieren de un estetoscopio adicional.

Hay otras formas de medir la tensión arterial como, por ejemplo, ultrasonidos, métodos de los que no nos ocupamos por ser más raros.

Como siempre, si te ha gustado el vídeo dale un like y suscríbete gratuitamente al canal.

¡Hasta pronto!

La medida de la presión arterial. Historia (I)

Insertamos el guión del vídeo La medida de la presión arterial. Historia (I) que se subió al canal Medicina, historia y sociedad hace tres semanas.

Se suele decir que la medición real de la presión arterial procede del siglo XVIII con los experimentos de Stephen Hales (1677-1761).

Para Johannes Müller, destacado fisiólogo alemán, el descubrimiento de la presión arterial fue más importante, incluso, que el de la circulación.

Veamos una síntesis de esta historia.

INTRO

Hales nació en Bekesbourne, Kent, el 7 de septiembre de 1677. En 1696 ingresó en la Universidad de Cambridge. Allí se interesó por la historia natural y por la astronomía. Fue elegido miembro de la Royal Society en 1718.

Fue capaz de insertar un tubo en una arteria de una yegua y observó que la sangre subía o bajaba con las pulsaciones del corazón. Describió la importancia del volumen sanguíneo en la regulación de la presión arterial. Acuñó el concepto de presión arterial y demostró la capacidad de bombeo del músculo cardíaco. Fueron las primeras mediciones que se hicieron. Sin embargo, se requería un tubo de más de dos metros de longitud y evitar que la sangre se coagulara pronto.            

Un siglo después, en 1828, Jean Léonard Marie Poiseuille (1797-1869) introdujo un manómetro de mercurio. Nació en 1797. Obtuvo la licenciatura en 1828. Igual que Magendie y Claude Bernard, se dedicó a la investigación sin hacer clínica y tener contacto con enfermos. En 1828 leyó su tesis sobre el uso del manómetro de mercurio para medir la presión arterial, con lo que ganó la Medalla de oro de la Real Academia de Medicina. El manómetro iba conectado a una cánula llena de carbonato potásico que actuaba como anticoagulante que se insertaba en una arteria del animal. Llegó a insertar cánulas en vasos de 2mm demostrando que en estas arterias tan pequeñas se mantenía la presión.

Estos hallazgos permitieron al fisiólogo Karl Ludwig idear el quimógrafo, del que ya hemos hablado en otro vídeo. Con el mismo creó la recogida de datos fisiológicos mediante gráficas.

Usó la cánula y el manómetro. Introdujo un sistema para que una punta fuera dibujando una gráfica en un tambor giratorio. A partir de ahí se diseñaron instrumentos similares que registraban otros parámetros fisiológicos.

En otro vídeo vimos cómo Vierordt con su esfigmógrafo medía la contrapresión que era necesaria para hacer que cesara la pulsación en una arteria. Etienne Jules Marey mejoró considerablemente el esfigmógrafo de Vierordt en 1860 y mejoró la precisión para establecer la presión arterial en los pacientes. Sin embargo, para que midiera la presión arterial había que complicar el aparato tanto que no fue útil. Eso sí, quedó para registrar las pulsaciones.

Pierre Charles Édouard Potain (1825-1901) señaló que, al medir la presión, había que tener en cuenta también la resistencia de la pared arterial.

La primera estimación precisa de la presión arterial en las personas fue realizada por el cirujano J. Faivre, en 1856. Durante la realización de una amputación de miembro inferior conectó un tubo de manómetro en forma de U con una cánula de latón, directamente a la arteria del paciente. Pudo obtener lecturas directas. Encontró que la presión arterial de la arteria femoral era de 120 mm Hg y la presión de la arteria braquial entre 115 y 120 mm Hg. Estas y otras lecturas directas fueron de gran valor para establecer un rango normal de presión arterial. Sin embargo, este método era obviamente impracticable para las mediciones de rutina.

Fue Samuel Siegfried Karl Ritter von Basch (1837-1905) quien finalmente prescindió de la punción arterial y del registro directo de la presión arterial.

Von Basch nació en Praga en 1837 y se graduó en Viena en 1862. El método de Von Basch utilizaba una bolsa de goma inflable que se llenaba de agua. Los bordes de la bolsa estaban apretados alrededor del cuello del bulbo manométrico que estaba lleno de mercurio. Una columna hueca subía desde el bulbo, de modo que cualquier presión creada en la bolsa de agua se transmitiría al bulbo, el mercurio subía por el tubo y, por lo tanto, se podría registrar la presión.

Usó un manguito estrecho de solo 5 cm de ancho. Esto provocó que se formara un ángulo agudo entre los bordes superior e inferior del manguito y la piel, lo que provocó que se acumularan áreas locales de alta presión y que la lectura no fuera exacta. Este error fue detectado y corregido por von Recklinghausen en 1901, quien reemplazó la anilla estrecha por una de unos 12 cm de ancho.

Algunos médicos aceptaron la introducción del esfigmomanómetro en la medicina clínica como una valiosa ayuda para el diagnóstico, pero otros sostuvieron la opinión de que al usar el esfigmomanómetro “empobrecemos nuestros sentidos y debilitamos la agudeza clínica”. A pesar de estas acusaciones, Potain hizo su segunda contribución para hacer que el medidor de esfigmomanómetro fuera más apto para uso clínico cuando, en 1889, reemplazó el agua por aire para la compresión. El dispositivo de Potain consistió en un braalete que se utilizó para la compresión de la arteria. Este se inflaba por medio de una segunda perilla y la presión se registraba con un manómetro aneroide portátil.

Con el esfigmomanómetro de Ritter se obtenía bien la presión sistólica, pero no la diastólica. Los médicos comenzaron a utilizar el método oscilatorio. Esto implicó observar las oscilaciones que se transmitían al mercurio en el manómetro desde la arteria, ya que cuando la presión del manguito era igual a la presión arterial, la arteria comprimida latía, provocando así pequeñas fluctuaciones regulares en la presión del manguito. La aparición de oscilaciones claras definió la presión sistólica y la transición de oscilaciones grandes a pequeñas, la presión diastólica.

En Inglaterra, Hill y Barnard inventaron un dispositivo que tenía un manómetro de aguja que era lo suficientemente sensible para registrar la fase diastólica. Su aparato era portátil y fácil de usar. El esfigmomanómetro de Hill y Barnard se ideó en la década de 1890 Sir Leonard Hill (1866-1952), un fisiólogo británico, y Harold Barnard (1868-1908), un cirujano británico. Contribuyó mucho a mejorar la medición de la presión arterial

Scipione Riva-Rocci (1863-1937) publicó ” Un nuevo esfigmomanómetro “, el 15 de diciembre de 1896, y el segundo, “La técnica esfigmomanométrica“, En 1897 en la Gazzetta Medica de Torino. Utilizó una bolsa de goma inflable guardada en una pulsera de material no expandible. Se comprimía toda la circunferencia del brazo mientras se inflaba la bolsa de goma con aire a través de una pera de goma conectada a ella. La presión dentro del brazalete se registraba a través de un manómetro de mercurio. Palpando el pulso, Riva Rocci podía conocer la tensión arterial sistólica al notar la desaparición del mismo cuando inflaba el brazalete, o su reaparición cuando lo desinflaba. La banda inicial era muy angosta: medía solo 5 cm. Heinrich von Recklinghausen hijo del conocido Friedrich Daniel von Recklinhausen, solucionó este problema llevando el ancho del brazalete a 12 cm. Riva-Rocci dirigió el Hospital de Varese y dio clases en la Universidad de Pavía. Murió por una encefalitis letárgica.

Otros atribuyen la lectura de la presión diastólica al ruso Nikolai Korotkov. Nació en 1874 y se graduó de médico en Moscú en 1898. Estuvo de cirujano en diversas guerras y acompañó al ejército ruso a Siberia, Japón y Singapur. Ejerció en la Academia Militar de San Petersburgo como cirujano asistente. Su centro de interés fue la cirugía vascular. Medir la presión como forma de definir la magnitud del daño vascular era entonces una necesidad obvia. Al empleo del esfigmomanómetro Korotkov sumó la colocación de un estetoscopio para niños sobre la arteria braquial, debajo del brazalete. Cuando el mismo se inflaba por encima de la presión arterial máxima la circulación en la arteria braquial se detenía. Al desinflar lentamente el brazalete, se podía auscultar en un momento determinado un ruido: la sangre volvía a circular y ese primer tono correspondía a la presión sistólica. Se escuchaban mientras se seguía desinflando el brazalete murmullos y luego ruidos coincidentes con los latidos, hasta que todo sonido desaparecía. El último ruido escuchado correspondía como sabemos con el momento en que la sangre circulaba libremente por la arteria, porque la presión en el interior del vaso había superado la ejercida por la banda, y la medición señalaba la presión arterial diastólica. Presentó su hallazgo ante la Academia Militar de San Petersburgo en un informe de una sola página en 1905. Murió muy joven, a los 46 años, de tuberculosis.

Su técnica ha resistido la prueba del tiempo, ya que se ha utilizado durante más de medio siglo sin prácticamente ningún cambio.

William Harvey y la circulación de la sangre

Como se ha subido un nuevo vídeo al canal de Youtube Medicina, historia y sociedad, y como es habitual, presentamos la transcripción del vídeo anterior dedicado a William Harvey y la circulación de la sangre.

Tan importante fue el descubrimiento de la circulación de la sangre que varios países se la quisieron atribuir en el pasado.

Andrea Cesalpino fue el único, siguiendo a Aristóteles, que dijo contra Galeno que el centro de las arterias, las venas y el corazón era el corazón y no el hígado. También señaló que la sangre va de las venas al corazón y de aquí a las arterias. Sin embargo, no llegó al descubrimiento de la circulación sanguínea.

La fisiología moderna comienza –podríamos asegurar– con el redescubrimiento de la circulación menor de la sangre, con algunos estudios de Servet, Realdo Colombo, Valverde de Amusco, Fabrizi d’Acquapendente y de Santorio. Tras estos se sitúa la figura de Harvey.

INTRO

Harvey nació en 1578 en Folkstone. Obtuvo el grado de bachiller en artes en el Caius College de Cambridge. Su fundador había sido compañero de Vesalio en Padua. Quizás fue por esto por lo que Harvey marchó allí para estudiar medicina en 1598. Terminó en 1602. Fue discípulo de Aquapendente, Casserio y Eustaquio Rudio.

Ese año regresó a Inglaterra. Revalidó en Cambridge su título de doctor, se inscribió en el Royal College of Physicians y en 1609 fue nombrado médico del Hospital de San Bartolomé (Londres).

En 1615 consiguió que el College of Physicians le encargara un curso de anatomía. Las notas de esa época demuestran, según los especialistas, de que ya intuía la circulación de la sangre, aunque no fue hasta 1628 que publicaría la noticia y cómo llegó hasta ella.

El libro fue impreso en Francfort con el título Exercitatio anatómica de motu cordis et sanguinis in animalibus. Lo dedicó a Carlos I. Éste le nombró médico de cámara en 1632. En 1631 vino a España con el duque de Lennox, acompañó a Carlos I con sus hijos a Edimburgo (1633) y estuvo con el duque de Arundel en Viena mientras este fue embajador (1636).

Durante la guerra civil siguió a Carlos I con sus hijos a Oxford, donde permaneció durante 4 años. Fue master del Merton College y compuso sus dos Exercitationes ad Riolanum.

Carlos I se entregó a los escoceses y Harvey volvió a Londres. Allí siguió investigando hasta publicar sus Exercitationes de generatione animalium en 1651.

Murio el 3 de junio de 1657 en Roehammton, Londres.

La circulación de la sangre

El librito, de 72 páginas. En el capíulo 8 dice:

“Hasta tal punto es nuevo e inaudito lo que voy a decir, que no solo temo el mal que me pueda venir de la envidia de algunos, sino hasta granjearme la hostilidad de todos los hombres”. Proclama la circulación de la sangre: ésta es impulsada por el ventrículo izquierdo a la aorta y regresa a la aurícula derecha a través de las cavas.

Para ello demuestra 3 tesis:

  1. La cantidad de sangre que pasa de la vena cava al corazón y las arterias es muy superior a la que podría formarse por la transformación del alimento ingerido. Recordemos que en el esquema de Galeno el alimento se transformaba en quilo, el quilo en sangre en el hígado, de ahí al corazón y de este a todo el cuerpo convirtiéndose en sustancia propia de cada parte.
  2. En los miembros la sangre afluye por las arterias y refluye por la venas en cantidad muy superior a la necesaria para su nutrición
  3. La sangre regresa al corazón por las venas y solo por ellas

La primera la demuestra mediante el cálculo. El ventrículo izquierdo tiene una capacidad de 47 grs. Cada contración expulsa a la aorta la sexta parte, es decir, unos 7 grs. El corazón late 2.000 veces por cada media hora. Por tanto, del corazón salen 12 kilos de sangre, cantidad muy superior a la que pueda haberse formado en el hígado a partir de los alimentos ingeridos, según esquema de Galeno.

La segunda tesis la comprobó observando lo que sucedía en el brazo cuando se le oprimía con ligaduras. Por un lado estában las fuertes, que impedían el paso de sangre por las arterias y se eliminaba el pulso a partir de la ligadura. Por otro las medianas, que bloqueaban el paso de sangre por las venas periféricas pero sí permitían captar el pulso.

Si se practica la ligadura fuerte en el brazo de un sujeto con venas muy marcadas, el pulso radial no se percibe. El axilar será más violento que de ordinario y la mano quedará fría.

Si se afloja la ligadura a media presión, se hinchan las venas del antebrazo y flexura del codo, vuelve a sentirse el pulso radial y la mano enrojece y se calienta. Si se afloja del todo la ligadura, desaparece la hinchazón venosa y el sujeto experimenta frío en la axila.

Por tanto, la sangre acude por las arterias y refluye por las venas.

La anatomía y función de las válvulas venosas patentizan la tercera tesis de Harvey. Su maestro Aquapendente dijo que las válvulas venosas eran compuertas que regulaban la progresión del líquido hemático desde el corazón. Sin embargo, una ligadura mediana en el brazo hace ver en las venas ingurgitadas pequeños abultamientos correspondientes a los conjuntos valvulares. Comprimiendo con el dedo una vena entre dos nódulos, se observa que la sangre no puede pasar más allá del nódulo cuando el dedo se mueve en sentido distal, mientras que lo hace con facilidad si el dedo se desliza en sentido proximal.

Todo esto no supuso la aceptación de sus teorías. Un experimento moderno, resolutivo en el sentido de Galileo y dos pruebas experimentales en absoluto concluyentes respecto de la verdad de esa hipótesis. Se le enfrentaron buena parte de los anatomistas. Sólo los seguidores de sus cursos en el Royal College le apoyaron.

MATÍAS GARCÍA

Quiero poner un ejemplo de los que le criticaron. Se trata del catedrático de anatomía de Valencia que nació en Agreda (Soria) en 1640 y murió en Valencia en 1691. Puede considerarse como la cabeza del galenismo más reaccionario. Trató de refutar las ideas de Harvey repitiendo sus experimentos. Es decir, no lo hizo de forma especulativa sino que recurrió al razonamiento de su gran práctica en la disección. Los principales ataques a la doctrina de William Harvey los expone en De motu cordis. De motu arteriarum. De motu sanguinis, un tratado sobre el movimiento de la sangre, el corazón y las arterias, incluido en sus Disputationes Medicinae Selectae (1677). Tres años más tarde, Matías García escribió Disputationes Physiologicae (1680), obra en la que expone las doctrinas sobre los temperamentos, humores y facultades, de acuerdo con el galenismo ortodoxo y en la que aprovecha de nuevo para criticar la doctrina de Harvey.

Harvey supo ver actividad en la contracción de la víscera y reposo en su dilatación. Con los años fue cambiando su pensamiento acerca del calor del corazón.

Aunque no nos ocuparemos de los aspectos en los que Harvey continuó mirando al pasado, siguió conectado con los conocimientos clásicos.

Para Harvey lo que el Sol es en el macrocosmos respecto a la Tierra, eso mismo sería el corazón en el microcosmos respecto de las partes periféricas.

Metodológicamente hablando, Harvey recurrió a:

  1. Observación sensorial o atenimiento del observador a lo que por sí mismo contempla.
  2. Inducción o la actividad mental de llegar, mediante observaciones repetidas y reflexión atenta a la verdad general que da razón suficiente de todas ellas.
  3. El experimento: entendido como un recurso técnico para que la naturaleza ostente la verdad a que frente a ella ha llegado la mente del investigador.

Obras de William Harvey

Exercitatio anatomica de motu cordis et sanguinis in animalibus… Guilielmi Harvei,… Francofurti: sumptibus G. Fitzeri, 1628

Exercitationes duae anatomicae de circulatione sanguinis ad Jo. Riolanum filium,… authore Gulielmo Harveo,..Roterodami: ex officina A. Leers, 1649

Exercitationes de generatione animalium, quibus accedunt quaedam de partu, de membranis ac humoribus uteri et de conceptione, autore Guilielmo Harveo,… Amstelodami : apud J. Janssonium, 1651.

Bibliografía

Bolli, R. (2019). William Harvey and the Discovery of the Circulation of the Blood. Part I. Circulation Research, vol. 124, nº 8, pp. 1169-1171.

Bolli, R. (2019). William Harvey and the Discovery of the Circulation of the Blood. Part II. Circulation Research, vol. 124, nº 9, pp. 1300-1302.

Borghi, L. (2018). Breve historia de la medicina. Madrid, Rialp.

Duffin, J. (2018). Una historia de la medicina escandalosamente breve. Tenerife, Ed. Melusina.

Fresquet Febrer, J.L. (2008). Mathias Garcia (1640-1691). En Epónimos y biografías médicas. Consultado el 1 de marzo de 2021 en https://www.historiadelamedicina.org/garcia.html

Laín Entralgo, P. (1973). La obra de William Harvey y sus consecuencias. En: Laín P. (dir.). Historia Universal de la Medicina. Barcelona, Salvat, vol. 4, pp. 235-249.

López Piñero, J.M. (2010). Historia de la Medicina universal. Valencia, Ajuntament de València.

Yount, L. (2008). Great minds of science. William Harvey. Discoverer of how blood circulates. Revised Ed. Enslow Publishers

El síntoma como la figura de un trazado gráfico fijo y mensurable

Como es habitual, presentado un nuevo vídeo en el Canal Medicina, historia y sociedad, insertamos aquí la transcripción del anterior; en este caso “El síntoma como la figura de un trazado gráfico fijo y mensurable”

Guión

En los dos vídeos anteriores hemos conocido que el cuadro sintomático es la expresión del desorden procesal que puede estudiarse desde la física o de la química. Hemos visto la consideración del síntoma como un proceso energético y como un proceso material.

A los médicos, a los que llamamos fisiopatólogos, también les resultó significativa la reducción del síntoma a la figura de un trazado fijo y mensurable.

[INTRO]
En primer lugar. El caso de los síntomas cuya expresión principal es un movimiento mecánico.
La invención del kimógrafo por parte de Carl Ludwig en 1847 fue un modelo de inspiración.
El kimógrafo es un dispositivo que dibuja una representación gráfica de la posición espacial a lo largo del tiempo. Consta de un tambor giratorio mecanizado envuelto con una hoja de papel, sobre la cual se mueve un lápiz o una punta entintada que registra los cambios en fenómenos como la presión arterial, el movimiento muscular, la actividad nerviosa y la respiración. El kimógrafo puede registrar, y luego se puede cuantificar y estudiar los cambios temporales en los fenómenos fisiológicos y la interacción entre ellos.

Uno de los primeros usos que tuvo fue la medición de la presión sanguínea. Su funcionamiento no era del todo perfecto pero de él nacieron los esfigmógrafos de Vierordt (1818-1884) y el de E.J. Marey (1855 y 1860 respectivamente).

Karl von Vierordt estudió en Berlín, Göttingen, Viena y Heildelberg. En 1849 fue nombrado profesor de Tubinga. Desarrolló técnicas y dispositivos para monitorizar el sistema circulatorio. Uno de sus trabajos más conocidos fue un tratado sobre al pulso y la presión arterial Die Lehre vom Arterienpuls im gesunden und kranken Zustände (1855). También publicó un Grundriss der Physiologie des Menschen (1871), un esquema o de la fisiología humana.

Otro de los más destacados es el de Marey. Este médico nació en Beaune (Francia) en 1830 y falleció en París en 1904. Se graduó en 1859 y montó un pequeño laboratorio en París donde estudió la circulación de la sangre. Autor de Du mouvement dans les fonctions de la vie (1868). En 1863 realizó mejoras en el esfigmógrafo que monitorizaba el movimiento del sistema circulatorio (especialmente el pulso) haciendo que fuera transportable.

La esfigmografía objetiva las ondas pulsátiles en forma de curvas características que se desarrollan en el tiempo y cuyos detalles nos informan acerca de la frecuencia y forma del pulso, así como del trabajo cardíaco tanto auricular como ventricular.

Presentamos aquí un modelo inspirado en el de Marey que se denomina Philadelphien.

Wundt, W. en su  Traité élémentaire de Physique médicale y diferentes autores en otros textos, presentan varios esfigmógrafos: aparte del de Marey, el de Longuet, el de Brondel, el de Béhier, etc.

Y aquí tenemos algunos trazados obtenidos con los esfigmógrafos.

Otro ejemplo es la flebografía con la que se obtenía el flebograma. Con el mismo se obtenían datos acerca de del funcionamiento del corazón derecho y del miocardio. Sobre el flebograma también se dejaba sentir el funcionamiento del corazón izquierdo, circulación capilar, circulación venosa periférica incluso la pulmonar, la respiración, y el funcionamiento de la válvula tricúspide. Ahora no tiene este significado pues se utilizan procedimientos radiográficos.

También se puede hablar de fonocardiografía o registro gráfico de los ruidos del corazón para objetivar los datos de auscultación en forma de cardiofonogramas. Más completo era combinar cardiograma con fonocardiograma. El método eléctrico de Einthoven, por ejemplo funcionaría así:

[Se explica el funcionamiento en un esquema]

Desde finales del siglo XVIII, Galvani y después Volta, estudiaron la presencia y el efecto de la electricidad en los seres vivos. El primero diseñó en 1820 un galvanómetro para medir la corriente eléctrica. En 1843 el fisiólogo Bois-Reymond detectó un pequeño potencial eléctrico o diferencia de voltaje en músculos animales en reposo que cambiaba cuando estos se contraían. En 1856 estudiaron los potenciales eléctricos del corazón. El fisiólogo August Waller publicó un trabajo en el que demostraba los cambios electromotores que acompañan al latido cardíaco en la persona. Usaba cables conectados a manos y pies en vez de en el corazón. William Baylis y Ernest Starling mejoraron la técnica y asociaron los cambios eléctricos a fases de la contracción y relajación cardíacas. Einthoven estuvo en una de las demostraciones de Waller en 1889. En 1893 acuñó el término “Electrocardiograma” y comenzó a construir aparatos y métodos de registro y análisis del ECG.

Einthoven convirtió el ECG en realidad combinando varias innovaciones. En 1895 utilizó un galvanómetro mejorado que le permitió identificar 5 picos: P Q R S T. En 1901 inventó un galvanómetro de cuerda que tenía un delgado cable de cuarzo cubierto de plata colocado entre dos electroimanes potentes Modificar las corrientes del cable provocaba movimientos que podían verse cuando un microscopio de transmisión los proyectaba sobre una cinta de papel fotográfico de registro continuo. En 1906 publicó la primera serie de ECGs normales y caracaterísticos de diez enfermedades. En 1924 recibió el Nobel y murió en 1927.

Con esta selección de instrumentos hemos visto la reducción de los síntomas a trazados fijos y mensurables Con el estudio de los mismos como procesos energéticos y como procesos materiales, completamos las principales características de la enfermedad desde la perspectiva fisiopatológica.

Bibliografía
Marey, E.J. (1868). Du mouvement dans les fonctions de la vie. Paris, Germer Baillière.

Rivera-Ruiz, M; Cajavilca, C; Varon, J (2008). Einthoven’s string galvanometer: the first electrocardiograph. Tex Heart Inst J. vol. 35, nº 2, pp. 174–178.

Roguin, A. (2005). Scipione Riva‐Rocci and the men behind the mercury sphygmomanometer. The International Journal of Clinical Practice, vol. 60, nº 1, pp. 73-79.

Wundt, W.M.; Imbert, A.; Monoyer, F. (1884). Traité élémentaire de Physique médicale.  Paris, Baillière.

Vierordt, K. (1855). Die Lehre vom Arterienpuls im gesunden und kranken Zustände. Braunschweig, Druck und Verlag von Friedrich Vieweg und Sohn, 1855

Vierordt, K. Die Pulskurven des Hämodynamometers und des Sphygmographen. Arch f physiol Heilk, 1857, Bd 1, pp. 552.

Vierordt, K. (1863). Die Anforderungen an den Sphymographen. Arch d Heilk, vol. 4, p. 513

Vierordt, K. (1871). Grundriss der Physiologie des Menschen. Tübingen, Verlag der H. Laupp’schen Buchhandlung.

El estudio de las disfunciones como procesos materiales

Como hemos subido un nuevo vídeo al canal de Youtube “Medicina, historia y sociedad“, vamos a insertar aquí en el blog la transcripción del guión del anterior: El estudio de las disfunciones como procesos materiales:

En el vídeo anterior decíamos que dos eran las posibilidades de estudio de las alteraciones funcionales en la enfermedad: investigar las alteraciones como procesos energéticos, estudiables por la física, y como procesos materiales, estudiables por la química. Vimos las primeras con el ejemplo de Wunderlich y la termometría clínica. En otro vídeo abordaremos otros ejemplos.

Hoy vamos a ver la segunda posibilidad, es decir, el estudio de las disfunciones como procesos materiales, estudiables desde la química. Se suele ejemplificar siempre con la obra de Friedrich T. von Frerich (1819-18885).

Nacido en Aurich (Alemania) fue profesor en varias universidades como Kiel, Breslau y Berlín. En 1859 sucedió a Johann Lukas Schönlein como jefe médico de la Charité de Berlín hasta que murió. Dedicó mucho tiempo al estudio de la química fisiológica y aplicó sus conocimientos y técnicas a la investigación de las enfermedades renales y hepáticas así como la diabetes.

Descubrió, por ejemplo, que la atrofia amarilla de hígado, en la que se produce una destrucción masiva de células hepáticas, es una alteración del metabolismo de las proteínas que acaba por hundirse totalmente conduciendo a la muerte del enfermo. A causa de esto, en la orina del paciente aparecen sustancias de desecho como la tirosina y la leucina. Esto se convirtió en signo fisiopatológico, una señal objetiva del trastorno de un proceso orgánico. Es decir, si en la orina de una persona hallamos estas sustancias nos hace sospechar que padece…

También fueron importantes los estudios de Felix Hoppe-Seyler sobre la hemoglobina, que posibilitaron también la introducción de sus alteraciones como signos fisiopatológicos. Este campo se aborda en su Handbuch der physiologisch- und pathologisch-chemische Analyse (Tratado de análisis fisiológico y patológico (1858-1883). Nació en Freyburg en 1825. Fue profesor en Greifswald, Tubinga y Estrasburgo. Murió en Wasserburg en 1895.

A continuación se muestra el Albuminómetro de Esbach, instrumento ideado por Georges Hubert Esbach en 1874 y modificado en 1880. Consiste en precipitar la albúmina con ácido pícrico y cítrico. Se llena el tubo de orina hasta la marca U y el reactivo hasta la marca R. Se tapa y se invierte 12 veces. Se deja reposar 24 horas, después de las cuales se mide la altura del coágulo en la escala grabada en el tubo. Equivale al número de gramaos de albúmina por litro. La presencia de albúmina en la orina nos puede estar indicando un mal funcionamiento del riñón.

En España se popularizó el Manual de análisis químico aplicado a las ciencias médicas del farmacéutico Juan Ramón Gómez Pamo.

Las bases de la colorimetría datan del siglo XVIII y en ella intervinieron varios científicos. Sus hallazgos fueron de gran importancia para los estudios fisiológicos y fisiopatológicos. Se trata de determinar la concentración de una sustancia disuelta al comparar el color de la disolución con un patrón.

El colorímetro de Jules Dubosq (1854), gracias a su sencillez, se incorporó a la clínica a finales del XIX. William Richard Gowers ideo uno formado por dos tubos de cristal, uno de los cuales se había graduado. El primero se dedicaba a poner el líquido de referencia y el otro al líquido problema. Cuando las dos soluciones eran iguales se miraba la marca correspondiente y el tubo graduado del 0 al 140% , dando el porcentaje de hemoglobina. Haldane mejoró el aparato debido a que daba muchos errores.

Suprimido en la grabación: [Otro que incluso sigue utilizandose hoy en países en vías de desarrollo es el que ideó el suizo Hermann Sahli (Berna, 1856 – 1933). Es parecido al de Gowers pero utiliza una solución de ácido clorhídrico al 1% para acercarse  o aproximarse al color del tubo de referencia. De fácil manejo y fiable con el que se consigue una gran reproducibilidad de las muestras.

En el tubo problema, a una solución de ácido clorhídrico hasta la señal 10 se vertían 20 mm cúbicos de sangre obtenida por punción digital. Después se añadían pequeñas cantidades de agua destilada hasta conseguir igualar el color del contenido del tubo con el testigo. Más tarde, como la intensidad del color del tubo testigo variaba por la acción de la luz y del tiempo, la solución fue sustituida por una referencia sólida basada en un cristal de composición y color inalterables.

Sahli también utilizó un hemocitómetro para contar las plaquetas que se conoce con el nombre de Hayem-Sahli]

Para el conteo de células (eritrocitos, leucoctos y plaquetas se utilizaron varios instrumentos. Uno de ellos fue la cámara de Bauer. Ideado por Carl Theodor Neubauer (1830-1879), que ahora veremos que incorpora este equipo, el Aparato de Bürker para el recuento de los glóbulos rojos y blancos de la sangre. Este hemocitómetro fue ideado por Karl Bürker (1872-1957) que simplificó el sistema de conteo y precisión entre finales del siglo XIX y principios del XX. Este tipo de instrumentos facilitó el nacimiento de la hematología.

Recordemos que el hemocitómetro sirve especialmente para el recuento de células en un medio líquido, que puede ser un cultivo celular, sangre, orina, líquido cefalorraquídeo, líquido sinovial, etc.

El conocido como Citron-Kanitz, de origen checo, sirvió para medir la cantidad de glucosa en sangre, en orina así como la hemoglobina.

Ha habido otros instrumentos más sencillos y para una primera aproximación, como el de Laboratorios Boehringer y el de Marucelli. Se hace una pequeña punción en el dedo, se extrae una pequeña cantidad de sangre con una pipeta; se deposita una gota en el círculo y se espera un tiempo. Luego se compara con la rueda de colores.

Aquí tenemos otro instrumento que nos mide la hemoglobina en sangre pero por el procedimiento de la espectrometría. Colorimetría es la técnica utilizada para determinar la concentración de una solución que tiene color. Mide la intensidad del color y relaciona la intensidad con la concentración de la muestra.

La espectrometría es un método científico que se utiliza para medir cuánta luz absorbe una sustancia química, midiendo la intensidad de la luz cuando un haz luminoso pasa a través de la solución muestra. También puede usarse para medir la cantidad de un producto químico conocido en una sustancia.

Fabricado por la Casa Hellige creada por Fritz Hellige en 1895. Consta de un visor, en la parte superior de un botón rojo, la escala regulable en el frontal y en la parte posterior el cajetín donde se inserta la muestra.

Este otro de la American Optical Company es el mismo que el anterior con alguna variación. El visor está a un lado; en el contrario está la conexión a la corriente; en la parte frontal las escalas regulables y en la cara posterior, el lugar donde se pone la muestra en esta especie de cajoncitos.

Volvemos al estudio de la orina. Aquí mostramos este estuche M.Moya. Con cada uno de estos reactivos podremos conocer la concentración de sustancias presentes como la glucosa, la acetona, etc.

Este otro utiliza 4 reactivos; dos de ellos para conocer la glucosa, otro para la albúmina y un último para la acetona (acidosis). En la tabla se indica el número de gotas de orina en la columna izquierda y los gramos de glucosa por litro en la columna de la derecha.

El Metrorin Barry sirve igualmente para determinar la albúmina, la glucosa y la acetona en orina. En el mismo se incluye un pequeño manual.

Por último éste sirve para hacer el test de azúcar en orina Sheftel, elaborado por Lilly and Company, Indianápolis. Las pastillas azules son de sulfato de cobre, las blancas de Metenamina. Igualmente se acompaña de un pequeño manual y de la escala de colores correspondiente,

Salvando la distancia en tiempo, viene a ser como éste actual, el COMBUR 5 HC, que nos mide varias cosas en orina: glucosa, leucocitos, nitritos, proteína, presencia de sangfre y de hemoglobina

También fueron apareciendo pruebas funcionales, exámenes clínicos rigurosamente estructurados para obtener información sobre el estado funcional del organismo o de alguna de sus partes cuando se les somete a una exigencia nueva y calculada.  Por ejemplo la exploración funcional del riñón tras ingestión de yoduro potásico, de azul de metileno, o de agua.

O  el examen de la capacidad funcional del diabético frente a los hidratos de carbono como la prueba de Külz, las pruebas de Naunyn y Strauss, o la de la “glucemia provocada” de Noorden y Rosenberg.

Siguieron otras pruebas funcionales renales, hepáticas, cardíacas, etc.

Lo mismo que sucedió con la forma de pensar o la mentalidad anatomoclínica que dio lugar a una nueva semiología, en este caso sucedió lo mismo. Así, capítulos de la patología actual se edifican sobre estos criterios: enfermedades de las glándulas de secreción interna, metabolismo y nutrición, etc.

Esta mentalidad condujo a la aparición de una nueva disciplina: la patología experimental o la investigación en los animales de experimentación de los procesos disfuncionales. Uno de sus creadores fue Ludwig Traube (1818-1876), amigo de Virchow y muy influido por los experimentalistas franceses Magendie y Claude Bernard. Éste último reunió valiosos trabajos en su Cours de pathologie expérimentale (1859).

El representante de la institucionalización de esta disciplina es Julius F. Conheim (1839-1884), discípulo de Virchow de quien modificó algunas de sus explicaciones sobre la inflamación mediante investigación.  Demostró que los leucocitos pueden salir de los vasos sanguíneos y aparecer en los focos inflamatorios. Fue autor de una Vorlesungen über allgemeine Pathologie (Leccions sobre patología general, 1877-80). En éstas ofreció una exposición del estudio científico de la enfermedad basada en supuestos fisiopatológicos y en los resultados de la patología experimental. Esta institucionalización también estuvo presente en los Archiv de Naunyn y Shmiedeberg. Hay que tener en cuenta que la farmacología también se benefició del enfoque fisiopatológico. Se crearon gran número de medicamentos que actuaban sobre síntomas y signos, aunque no sobre las causas.

En el próximo vídeo seguiremos hablando de la enfermedad desde el punto de vista de las funciones alteradas.

Bibliografía

–Bynum, WF et al (2006). The Western Medical Tradition 1800 to 2000. Cambridge, Czmbridge University Press

–Cámara de Neubauer. En Wikipedia. Disponible en https://es.wikipedia.org/wiki/C%C3%A1mara_de_Neubauer , Consultado el 2 de enero de 2021.

–Fresquet Febrer, J.L. (2009). William Ricahrd Gowers (1845-1915). En: Biografías y epónimos médicos. historiadelamedicina.org. Disponible en: https://www.historiadelamedicina.org/gowers.html Consultado el 2 de enero de 2021.

–Fresquet Febrer, J.L. (2010). Albuminómetro de Esbach. Museo de Historia de la Medicina y de la Ciencia. Material didáctico. Disponible en: https://www.uv.es/fresquet/Expo_medicina/Patologia_XIX/Albuminometro_de_Esbach.pdf Consultado el 2 de enero de 2021.

–Karl Bürker. En Wikipedia alemán. Disponible en https://de.wikipedia.org/wiki/Karl_Bürker , Consultado el 2 de enero de 2021.

–Laín Entralgo, P. (1978). Historia de la medicina. Barcelona, Salvat.

–López Piñero, J.M. (2010). Historia de la medicina universal. Valencia, Ajuntament de València.

–Obituario de Georges Hubert Esbach (1890). Br Med J, vol. 1, nº 1523, p. 577.

–Sánchez González, MA (2012). Medicina y humanidades médicas. 2ª ed., Barcelona, Elsevier

–Verso, ML (1971). Algunos pioneros de la hematología del siglo XIX. Medical History,, vol.15, nº 1, pp. 55-67.

Wunderlich y la termometría clínica

Subido un nuevo vídeo al canal Medicina, historia y sociedad, insertamos en este post la transcripción del anterior: Wunderlich y la termometría clínica.

“En el vídeo anterior hablábamos de la importancia de la lesión y de las alteraciones estructurales en patología. Sin embargo, esto solo nos proporciona información de la enfermedad en un determinado momento y en localizaciones concretas.

A lo largo de las primeras décadas del siglo XIX Alemania salía de un periodo en el que habían florecido los sistemas especulativos por la influencia de la llamada Naturphilosophie. La química y la física seguían proporcionando apoyo para la construcción de una patología científica. Ahora era necesario estudiar la enfermedad desde el punto dinámico.

Dos eran las posibilidades: investigar las alteraciones como procesos energéticos, estudiables por la física, y como procesos materiales, estudiables por la química.

Carl Reinhold August Wunderlich, hijo de alemán y francesa, fue uno de los primeros en adentrarse en el primer campo. Veamos cómo.

[INTRO]

Wunderlich nació en 1815 en Sulz, junto al Neckar (suroeste de Alemania). Su padre era médico y trabajó en salud pública. Falleció en 1824. Con su madre y su abuela se trasladó a Stuttgart donde finalizó sus estudios secundarios en 1833. Estudió después medicina en Tubingen –donde se ofrecía una enseñanza libresca– hasta 1837. Allí fue influenciado por Albert Frederich Schill (1812-1839), un profesor que había estado en Francia e Inglaterra, que le recomendó que aprendiera percusión y auscultación, lo que hizo durante tres viajes a Viena. Con otros dos renovadores (Wilhelm Roser (1817-1888) y Wilhelm Greisinger (1817-1868) fundó el el Archiv für Physiologische Heilkunde en 1842, donde clamó por una nueva medicina basada en la observación científica y en particular por la obra fisiológica de Johannes Müller (1801-1858). Uno de los artículos de la introducción llevaba el título “Sobre las deficiencias de la medicina alemana actual y sobre la necesidad de una firme orientación científica de la misma”, donde decía: ‘La medicina, como ciencia empírica e inductiva, tiene que vestir el mismo atavío y progresar con los mismos métodos que las ciencias físicas exactas… La medicina fisiológica, apoyándose en hechos comprobados, tiene que formular las leyes según las cuales el organismo vive y enferma, sana y perece’.

Estuvo un año en París donde aprendió especialmente de Pierre Charles A. Louis (1787-1872) y también de Louis D. Jules Gavarret (1809-1890), empirismo y estadística aplicada.

Regresó a Stuttgart donde presentó su tesis en 1838 sobre la nosología del tifus. De nuevo estancia en París y después, en 1840, se trasladó a Viena. Publicó un libro (Wien und Paris) en el que realiza un agudo análisis crítico en el que comparaba la medicina que se hacía en ese momento en Francia y la que se desarrollaba en el área germánica. París era para él el lugar más adecuado para formarse. También se refería al renacimiento de la escuela vienesa en torno a las figuras de Rokitansky y Skoda.

Habiéndose habilitado en 1839 como profesor en la Universidad de Tubinga, pasó por asistente y sustituto. En 1846 fue nombrado profesor ordinario de clínica médica. Hubo reacciones en contra por parte del profesorado conservador y tuvo que interceder por él el ministro de educación del reino de Württemberg.

En 1845 publicó Versuch einer pathologischen Physiologie des Blutes (1845) y al año siguiente comenzaron a ver la luz los tres volúmenes de su Handbuch der Pathologie und Therapie (1850-1852). El libro sobre la fisiopatología patológica de la sangre es una muestra de que Wunderlich hizo investigación experimental de laboratorio. El segundo indica que la fuente principal de su obra de investigación fue la observación y la exploración clínica.   

En 1850 Wunderlich aceptó una de las cátedras de más prestigio de Alemania, la de la Universidad de Leipzig. Allí estuvo a lo largo de veinticinco años durante los cuales publicó una Geschichte der Medizin (1858) y su obra central Das Verhalten der Eigenwärme in Krankheite (El comportamiento de de la temperatura corporal en las enfermedades) (1868). Convirtió su servicio del Jakobshospital en uno de los más importantes de Alemania. Dio clases de patología y terapéutica, de psiquiatría y también de historia de la medicina

Wunderlich culminó el grueso de su trabajo sobre termometría mientras estuvo en Leipzig. A lo largo de dieciocho años antes de publicar Das Verhalten der Eigenwärme in Krankheiten, recogió datos del examen clínico de más de veinticinco mil pacientes. Reunió miles y miles de registros de las lecturas de la temperatura. El análisis de estos datos produjo una veintena de trabajos sobre termometría además del libro.

El termómetro
Galileo ya utilizó el termoscopio que Sanctorius empleó con fines médicos. Varios médicos franceses y alemanes del siglo XIX se interesaron también por el termómetro. Sin embargo, el mérito de haber sentado de modo sistemático los fundamentos científicos de la termometría clínica es de Wunderlich, así como haber convertido el termómetro en un instrumento imprescindible de la práctica médica.

Aquí vemos distintos tipos de termómetros algunos muy antiguos. Muy recientemente se sustituyó el mercurio de los mismos. [Se muestran varios termómetros de diferentes épocas].

En el contexto de la mentalidad fisiopatológica Wunderlich se interesó por la fiebre, el signo más adecuado a una consideración energética y procesal. Buscó descubrir por vía experimental que las modificaciones de la temperatura en las enfermedades se hallan fundamentadas en una ley. 

Los principios de los que partió Wunderlich fueron: (a) la constancia de la temperatura en las personas sanas, y (b) la variación de la temperatura en la enfermedad. Recogió millones de registros, como hemos dicho. Trató de buscar regularidades en los trazados termométricos de las enfermedades. Los halló a pesar de que con frecuencia había variaciones que dependían de influencias accidentales. Por tanto, muchas especies morbosas se corresponden con tipos bien delimitados de temperaturas alteradas.

Wunderlich extrajo las curvas térmicas típicas del tifus abdominal, el tifus exantemático, la fiebre recurrente, el sarampión, la viruela, la neumonía, la escarlatina y el paludismo reciente. Otras eran relativamente típicas, como la de la septicemia, rubeola y varicela, erisipela, amigdalitis, meningitis, reumatismo agudo, pleuritis, etc.

El espectacular desarrollo de la microbiología en la segunda mitad del siglo XIX y la aparición de medicamentos eficaces contra las infecciones a principios del siglo XX oscurecieron de alguna manera la excelente labor de Wunderlich.

Mientras Wunderlich trabajó en el tema, el también alemán Justus von Liebig (1803-1873) acababa de descubrir que el calor animal se originaba en los procesos químicos orgánicos, especialmente en las oxidaciones. Por otro lado, los trabajos de Meyer, Joule y Helmholtz habían llevado a la formulación del primer principio de la termodinámica.

Wunderlich falleció cuatro años después que su hijo, en septiembre de 1877″.

Bibliografía
—Carl Reinhold August Wunderlich.En Whonamedit? Disponible en http://www.whonamedit.com/doctor. cfm/3266.html Consultado el 10 de diciembre de 2013.

—Carl Reinhold August Wunderlich und die Universitätsklinik St. Jakob. Historia de la Universidad de Leipzig. Disponible en: http://www.uni-leipzig. de/~agintern/uni600/ug174.htm Consultado el 12 de diciembre de 2013.

—Karl Reinhold August Wunderlich. En: Professo- renkatalog der Universität Leipzig. Catalogus pro- fessorum lipsiensium. Dispoible en: http://www. uni-leipzig.de/unigeschichte/professorenkatalog/ leipzig/Wunderlich_1307/ Consultado el 5 de dicie- mre de 2013.

—Diepgen, P. Historia de la Medicina. 2a ed., Barce- lona, Labor, 1932.

—Hess, V. Objektivität und Rhetorik: Karl August Wunderlich (1815–1877) und die klinische Thermo- metrie. Medizinhistorisches Journal, 1997; 32(3-4): 299-319.

—Korn, G. Wunderlich, Karl Reinhold August. In: Allgemeine Deutsche Biographie (ADB). Band 44, Duncker & Humblot, Leipzig 1898, S. 313 f.

—López Piñero, J.M. Patología y medicina interna. In- troducción general, Alemania, Francia, Gran Bretaña y España. En: Laín Entralgo, P. (dir). Historia Universal de la Medicina. Barcelona, Salvat, vol. 6, pp. 123-156.

—Mackowiak, P.A.; Wasserman, S.S.; Levine,M.M. A Critical Appraisal of 98.6°F, the Upper Limit of the Normal Body Temperature, and Other Legacies of Carl Reinhold August Wunderlich. JAMA. 1992; 268(12): 1578-1580.

–Mackowiak, P.A.; Worden, G. (1994). Carl Reinhold Wunderlich and the evolution of clinical thermometry. Clin. Infect. Dis., vol. 18, n1 3, pp. 458-467.

—Oon SF, Murphy M, Connolly SS. Wunderlich syndrome as the first manifestation of renal cell carcinoma”. Urology Journal, 2010; 7 (2): 129–32.

—Singer, Ch.; Underwood, E.A. Breve Historia de la Medicina con un apéndice sobre la Historia de la Medicina española por José M. López Piñero. Ma- drid, Guadarrama, 1966.

—Temkin, O. Wunderlich, Schelling and the His- tory of medicine, Gesnerus,1966; 23: 188-195. En: (1977)The double face of Janus, Baltimore, The Jo- hns Hopkins University Press,1977, pp. 246-251.

Laënnec y el estetoscopio

A continuación insertamos la transcripción del vídeo Laënnec y el estetoscopio que se subió hace unos días en el canal de Youtube “Medicina, historia y sociedad”.

El fonendoscopio es hoy todavía uno de los instrumentos más conocidos de la población. Realmente ha llegado a convertirse en un símbolo de la medicina.

El actual fonendoscopio comenzó siendo un instrumento muy sencillo ideado por el médico francés René Teophile Laënnec.

Vivió momentos de cambio (Revolución francesa y caída del antiguo régimen, Imperio y Restauración). Laënnec ideó un artilugio sencillo que se ha utilizado hasta hoy conservando esa simplicidad, pero habiendo rendido extraordinarios servicios a la medicina.

Laënnec nació en Quimper, pequeña ciudad del Finisterre francés en 1781. Su padre, que enviudó pronto, lo puso al cuidado de su tío Guillaume, médico de Nantes, que había sido profesor y rector de su Universidad. Sus primeros conocimientos y su vocación le vienen de él. Con su tío vivió la Revolución. Justo delante de su casa instalaron el patíbulo donde había ejecuciones a diario. Se vieron obligados a cambiar de domicilio.

En 1800 fue pensionado para estudiar en la École Spéciale de Santé, donde cada Departamento enviaba a su mejor alumno. A los quince años ya era cirujano de tercera y médico militar.

Cuando llegó a París todavía pudo seguir el último curso que impartió Bichat mientras asistía al servicio de Corvisart, médico de Napoleón, en la Charité. Fue la influencia de éste la que le condujo por el camino que tomó en su vida profesional. En 1804 leyó su tesis Propositions sur la doctrine d’Hipocrate, relativement a la médicine pratique.

Siguieron después años de autopsias, informes, memorias y comunicaciones. No dejó de observar, fue minucioso y trató de no omitir nada. Se le considera continuador de la obra de Bichat e igual que él, a los 25 años, ya había transformado la medicina. Durante estos años dio un curso de Anatomía patológica, rival del que impartía Dupuytren.

Fue médico en el Hospital de Beaujon y de la Salpêtrière. En 1816 le nombraron jefe de clínica del Hospital Necker. Con toda naturalidad y sin presuntuosidad inventó la auscultación mediata como método de trabajo.

Esto me recuerda a que de niños tratábamos de trasmitir el sonido entre dos latas.

El 23 de febrero de 1818 Laënnec presentó a la Academia de Ciencias su comunicación «Mémoire sur l’auscultation par des moyens acoustiques, dans la pratique de la médecine », en la que incluía la descripción del estetoscopio que puso a punto como jefe médico en Necker en 1816.

Portal, Pelletan y Percy presentaron ese mismo 1818 a la Acadèmie Royale des Sciences la memoria en la que elogiaron la auscultación mediante estetoscopio.

En 1919 apareció la primera edición de  De l’auscultation médiate ou Traité de diagnostic des maladies des poumons et du coeur fondé pricipalement sur ce noveau moyen d’exploration.

La vida de Laënnec transcurría visitando enfermos y enseñando durante el día, y por la noche atendiendo la correspondencia, ordenando las observaciones recogidas durante el día, redactando y leyendo. Laënnec se contagió de tuberculosis. Según cuenta en la segunda edición de su Tratado, la sierra con la que cortaba unas vértebras donde se habían desarrollado tubérculos tuberculosos, le produjo una herida en uno de los dedos de la mano izquierda. ¿Fue este el lugar de entrada del bacilo de Koch?

Para recuperarse volvió a la ribera bretona por espacio de dos años. Regresó a París a finales de 1821. En 1822 dio su primera lección en el College de France donde critica las especulaciones de Broussais. En 1823 fue nombrado profesor de clínica médica de la Charité. Hasta allí acuden médicos de toda Europa a escucharle y aprender.

En 1926 se publicó la segunda edición de su Tratado. Era casi un libro nuevo, mejor documentado y más preciso. Algunos médicos se enfrentan al método, pero fue Broussais el que procuró los mayores ataques al método anatomoclínico. Sintiéndose cada día más enfermo, Laennec regresó a Kerlouarnec en la primavera de 1826. Falleció el día 13 de agosto.

La idea
Laënnec se dio cuenta de que cuando se aplicaba la oreja a un extremo de una viga, se podía escuchar el sonido producido por un golpe de alfiler dado en el otro extremo.

Dice:

“Tomé un cuaderno de papel, formé con él un rollo fuertemente apretado, del cual aplique una extremidad sobre la región precordial, y, poniendo la oreja en el otro extremo, quedé tan sorprendido como satisfecho oyendo los latidos del corazón de una manera más neta y distinta que cuantas veces había aplicado mi oído inmediatamente”.

Existía la exploración inmediata, pero no era agradable ni para el médico ni para el paciente, y menos en el caso de mujeres. Así que, desde entonces el médico diagnosticará con los ojos, las manos y el oído.

Lo que se escuchaba con el estetoscopio era un caos de sensaciones. La labor de Laennec consistió en escuchar centenares de pechos enfermos y relacionar los distintos tipos de sonidos con las lesiones que había debajo. La autopsias le revelaban esas lesiones. Laennec hizo una clasificación:

–Ruidos respiratorios: respiración vesicular, bronquial, cavernosa, soplante o metálica
–Ruidos vocales: broncofonía, pectoriloquia y egofonía
–Ruidos de la tos: tubaria y cavernosa
–Ruidos sobreañadidos o ajenos a la respiración: estertores  como los crepoitames, las sibilancias, roncus, etc.
–Ruidos cardíacos: sistótilo y diastólico, soplos, etc.

Laënnec fue empírico y ni siquiera se fio de la anatomía patológica porque se encontraba en plena etapa de la histología ilusoria. Los microscopios no estaban preparados, no disponían de lentes acromáticas. Utilizó la auscultación, el sonido en este caso, para hacer visual y táctilmente presente lo que hay de oculto en el cuerpo del enfermo. Él trató de Ver a través del sonido.

Lo que practicó Laënnec era medicina anatomoclínica. Desde hacía siglos las autopsias iban haciéndose más regulares con el fin de hallar lesiones que, poco a poco, fueron tomando relevancia en el pensamiento médico.
La lesión aspirará desde entonces a convertirse en el eje y fundamento de toda la Medicina si es que ésta quiere ser verdadera ciencia. Bichat lo proclamó. Desde Bichat la lesión además de ser la clave interpretativa del cuadro morboso, era para muchos el eje de descripción nosográfica y el fundamento de toda la nosología. Pero, a diferencia de Bichat, para que una lesión pueda ser tomada en consideración debía cumplir tres condiciones: no podrá referirse a la descomposición cadavérica, deberá ser reconocible por los sentidos, y modificará la sustancia del órgano de una manera evidentemente incompatible con el ejercicio de sus funciones.

El nexo entre la lesión anatomopatológica y la exploración quedó establecido por el signo físico (cualquier dato de observación sensorial que permita al clínico obtener, con bien fundada presunción de certidumbre, una imagen parcial del estado físico en que se encuentra el cuerpo del enfermo en el momento de la exploración. De esta manera se sentaba la primera base de la patología y clínica contemporáneas.`

Laënnec empleó un cuaderno enrollado. Después hizo construir un estetoscopio de madera cuyo diseño se ve en este grabado de su Tratado. Después surgieron otros muchos, como los que hemos visto, con formas diferentes y fabricados con distintos materiales (madera, ebonita, metales, plástico, mixtos, etc.). Poco a poco fueron cambiando más hasta llegar al fonendoscopio binaural que se usa hoy en día y que consta de:

–Olivas (auriculares que se colocan en los oídos)
–Las ojivas (de metal, donde se insertan las olivas)
–Conexión o tubo en Y
–Manguera: Su longitud oscila desde los 30 a los 40 centímetros para facilitar la transmisión de las ondas sonoras
–Campana: Se encarga de transmitir, sobre todo, los sonidos graves. Ideal para escuchar los pulmones.
–Diafragma: en la parte posterior de la campana, y su diámetro es algo más grande que ésta. Transmite los sonidos de alta frecuencia. Ideal para escuchar los sonidos cardíacos.

También hay fonendoscopios electrónicos que amplifican el sonido y otros que se conectan a un Smartphone para amplificar el sonido y grabarlo.

Si te ha gustado el vídeo dale un Iike y suscríbete gratuitamente al canal para su mantenimiento.

Bibliografía
–Atalic, B. (2019). 200 Anniversary of the Beginning of Clinical Application of the Laennec’s Stethoscope in 1819. Acta Med Hist Adriat, vol. 17, nº 1, pp. 9-18.

–Ackerknecht, E.H. (1969). Medicine at the Paris Hospital, 1794-1848. Baltimore, The John Hopkins Press

–Bruyère, M. (2012). Lënnec: L’homme à l’oreille d’or. Paris, Coop Breiz.

–TO, Cheng (2007). How Laennec invented the stethoscope. Inst J cardiol, vol. 118 nº 3, pp. 281-5

–De Blazy, M. (2016). Laënnec, entrendre pour mieux voir. París, Edition Causam

–Laënnec and the Stethoscope (2019). JAMA, vol. 322, nº 5, p. 472.

–Laín Entralgo, P. (1954). Clásicos de la Medicina: Laënnec. Madrid, CISC.

–Sakula, A. (1993). Laennec and the invention of the stethoscope. J Med Biogr, vol. 1, nº 3, pp. 113-116.

–Yaqub, F. (2015). Rene Theophile Hyacinthe Laennec. Lancet Resir Med, vol. 3, nº 10, pp. 755-6.

Fórceps obstétrico. Un poco de historia (I)

Los últimos vídeos del canal de Youtube “Medicina, historia y sociedad” correspondientes a la primera temporada, están dedicados a contar algo de la historia de los fórceps obstétricos. En dos partes o vídeos se abordan los de Levret-Dubois, Simpson-Braun, Tarnier y Killian-Luikart, aparte de una introducción y de una valoración sobre su uso actual.

Fórceps obstétricos. Un poco de historia (I)

Este es el guión del primero de los vídeos que contiene una introducción sobre la historia de los fórceps obstétricos así como la descripción de los de Levret-Dubois y Simpson-Braun:

Introducción
“Aquí tenemos unas piezas sencillas que, ajustadas entre sí y empleando una energía mecánica, realizan un trabajo o cumplen una determinada función. Puede ser una máquina simple vista como un conjunto de mecanismos. Entre las máquinas simples tenemos el plano inclinado, el tornillo, la rueda, la palanca y la polea.

El parto con la ayuda de instrumentos está descrito en el siglo VI aC en la India y también en los textos hipocráticos y otros escritos greco-romanos entre el 500 aC y el 500 dC.

Muchas veces se usaban sólo para extraer el feto muerto después de varios días para evitar la muerte de la mujer. Posteriormente se emplearon buscando beneficios tanto para la madre como para el bebé.

Como siempre en Historia, podemos remontarnos al origen de este tipo de instrumentos recurriendo a imágenes que provienen de bajorrelieves, de manuscritos, esculturas, etc., pero podríamos equivocarnos. A veces se trata aparatos parecidos a los que se daba un uso distinto del que nosotros pensamos.

En lo que se ha publicado hasta ahora al respecto, –mayoritariamente en inglés, lo que puede introducir errores porque suelen ignorar lo que no está escrito en esa lengua– relacionan el nacimiento del fórceps con la familia de hugonotes Chamberlen que se refugiaron en Gran Bretaña en el siglo XVI. El padre se llamaba William. A sus dos hijos les puso de nombre Peter (el mayor y el menor). Ambos se convirtieron en miembros de la Barber Surgeons Company. Se dice que, probablemente el mayor, fuera el creador del fórceps a finales del siglo XVI. Otros miembros de la familia introdujeron pequeñas modificaciones.

Los Chamberlen se “vendían” a sí mismos como hombres de ciencia  porque entonces las “parteras varones” no estaban bien vistos.

Se enfrentaron a multas por no acudir a las conferencias del Barber Surgeon Guild, necesarias para mantener la licencia profesional. En 1612 el Royal College of Physicians multó a Peter el mayor por recetar medicamentos administrados por vía interna (sólo lo podían hacer los médicos).

El fórceps fue creado con el propósito de extraer al niño de manera segura en el caso de un parto difícil. Antes se utilizaban dispositivos no diseñados ex profeso; solían ser un peligro tanto para el niño como para la madre.

Los hermanos Chamberlen guardaban sus fórceps, su preciado secreto familiar, en un enorme cofre adornado con tallas doradas. Lo transportaban en el interior de una caja enorme rodeado todo de un gran secretismo. Vendaban también los ojos de la futura madre antes de abrir el cofre, para que no viera la herramienta. También se cubría la mitad inferior de la mujer con mantas porque el partero trabajaba con el tacto sin mirar. Esto también protegía el instrumental de miradas ajenas.

En el fondo los Chamberlens eran hábiles empresarios. Anunciaron sus servicios y protegieron su invento de los ojos rivales. Uno de los hijos de Pedro el joven fue uno de los pocos Chamberlens que obtuvo un título médico, pero fue advertido por el Royal College of Physicians porque vestía de forma frívola y extravagante. Fue expulsado después por no asistir a las conferencias. Sólo quiso atender a familias ricas.

Los instrumentos originales de Chamberlen fueron descubiertos en 1813 bajo las tablas del ático de su residencia de Essex, escondidos por Ann, la esposa de Peter el menor.

A pesar de esto, comenzaron a aparecer modelos de fórceps desde principios del siglo XVIII. No es raro que se filtrara algún diseño y que otros obstetras lo copiaran e incluso lo mejoraran. Por otro lado, parece que en los Países Bajos también aparecieron fabricantes de fórceps y de otros instrumentos médico-quirúrgicos.

A mediados del siglo XVIII uno de los obstetras más destacado de Europa fue William Smellie (1697-1763). Su formación no fue demasiado regular y empezó a ejercecer antes de que tener su título. Contribuyó a dotar la obstetricia de una base más científica. Mejoró los fórceps pero promovió el parto natural. En 1752 publicó el Tratado sobre la teoría y práctica de los partos.

Los fórceps se desarrollaron también en Europa continental. En buena parte del siglo XIX estaban destinados a tratar los problemas de las pequeñas pelvis deformadas que provocaban desproporción pélvica y trabajos de parto prolongados. Esto llevó al diseño de numerosos modelos de fórceps centrados en el desarrollo de la tracción del eje. 

Fórceps de Levret-Dubois
André Levret nació en París en 1703 y murió en la misma ciudad en 1780. Contemporáneo del inglés William Smellie (1697-1763). Lévret realizó un estudio concienzudo del canal del parto y de las presentaciones fetales  en el parto y diseñó un fórceps con arreglo a estas características. Introdujo la curvatura pélvica que permitía facilitar la tracción cuando la cabeza fetal estaba detenida en una posición alta en la pelvis. De esta forma se inicia una etapa más científica en lo que a concepción y uso del fórceps se refiere. El de Smellie en Inglaterra era parecido, pero más corto. Después aparecieron los de Simpson y Tarnier, y más tarde, el de Kielland.

Antoine Dubois modificó sensiblemente el de Levret. Doubois, baron Dubois, nació  en 1756 en Gramat, cerca de Cahors (Lot) y murió en 1837 en Paris. Fue un conocido cirujano francés, jefe de los servicios de maternidad de Napoleón y de su mujer la emperatriz María Luisa. Este fórceps se caracteriza porque un mecanismo de bloqueo de tornillo asegura las dos hojas. Los mangos tienen un atractivo y característico rayado. Los extremos de los mangos también se usaron como ganchos sin filo y se desatornillaban o desenroscaban para revelar puntas afiladas que podrían haberse usado como instrumentos destructivos para colapsar el cráneo fetal en caso de un parto detenido.

Forceps de Simpson-Braun
Uno de los fórceps más populares fue el de Simpson (1848). Defendía que era el mejor ya que, tras viajar por toda Europa, incorporó las mejores características de cada uno de los que había visto. 

Sir James Young Simpson, nació en Bathgate (Escocia) en 1811 y murió en Edimburgo en 1870. Obtuvo el título en 1830 en el Royal College of Surgeons de Edimburgo. Dos años más tarde obtuvo el título de médico. Conocido, sobre todo, por ser el primero en demostrar las propiedades anestésicas del cloroformo en humanos y ayudar a popularizarlo. Fue partidario, además, de incorporar parteras en los hospitales. 

Las pinzas obstétricas Simpson-Braun están hechas de acero inoxidable y constan de dos ramas que se utilizan para colocarlas alrededor de la cabeza del bebé. Tienen un mango ranurado para un agarre más seguro. 

Este fórceps obstétrico está entre los más utilizados y tiene una curva cefálica alargada. Se utiliza cuando hay un alargamiento temporal de la cabeza fetal a medida que se mueve a través del canal del parto.

Este que vemos es el corto. El fórceps de Simpson-Braun presenta ventajas e inconvenientes. Entre las primeras, su curvatura cefálica amplia permite buena toma o agarre parieto-malar y logra una buena adaptación al canal del parto. Sin embargo, dificulta la rotación y el mango no permite la tracción en el sentido del canal del parto.

También es interesante recordar que Simpson diseñó el Air Tractor en 1838, el primer extractor de vacío conocido para ayudar en el parto”.

Bibliografía
En el guión del segundo vídeo dedicado a los fórceps obstétricos.

Andrés Vesalio (1514-1564). Una nueva forma de ver el cuerpo humano

Al subir en el canal Medicina, historia y sociedad un nuevo vídeo, “Fórceps obstétricos. Un poco de historia (I)“, voy a insertar el guión del anterior, el que dedicamos a Andrés Vesalio: “Andrés Vesalio (1514-1564). Una nueva forma de ver el cuerpo humano.

Guión

En esta ocasión nos vamos a ir a la época del Renacimiento. Bueno, ya sé que algunos me dirán que el Renacimiento no existió.

Fueron otras personas siglos después, especialmente el francés Jules Michelet y el suizo Jacob Burckhardt los que dieron forma al concepto “Renacimiento”.

Por supuesto hay que recordar que ese fenómeno no fue universal y afectó sólo a una parte del planeta, especialmente a Europa.

Unos lo consideran como una continuación o evolución de la época medieval y otros como una completa novedad en la que la persona, liberada del espíritu de la Edad Media se convierte en artífice de sí misma.

Otra manera de considerar al Renacimiento es como una transición crítica, como una dialéctica de dos formas de ver el mundo: la medieval y la moderna con muchas contradicciones internas.

No nos entretengamos en el asunto porque hay abundante literatura sobre el tema. Ocupémonos, aunque no se a fondo, de una de las figuras centrales y decisivas de la Historia de la Medicina: ANDRÉS VESALIO

Vesalio nació en Bruselas en 1514 en el seno de una familia en la que había habido médicos de cámara, es decir, médicos al servicio de emperadores alemanes durante generaciones.

Estudió en Bruselas y Lovaina y a los dieciocho años se trasladó a París para estudiar medicina. Estuvo durante tres años (1533-1536), en un ambiente en el que prevalecía el galenismo, siguió las enseñanzas de Jacobo Silvio y Günther von Andernach. El primero de ellos utilizaba el libro De usu partium de Galeno hasta la mitad; el resto –decía– era demasiado complicado para los estudiantes. Contrariado y seducido por la materia Vesalio trató de completar su formación osteológica con huesos sustraídos del cementerio de los Santos Inocentes. También realizó algunas disecciones ayudado por su compañero Miguel Servet.

El estallido de la guerra entre Francisco I y Carlos V le devolvió a Lovaina, donde permaneció por espacio de dos años (1536-1537). Allí le fue otorgado el grado de bachiller en medicina en 1537. Realizó disecciones y publicó su primera obra. Marchó después a Italia. Pasó primero por Venecia, donde conoció a su futuro colaborador y discípulo de Tiziano, Stefan Kalkar, y fue después a Padua para inscribirse en su escuela médica.

En Padua realizó su prueba doctoral el 5 de diciembre de 1537 y al día siguiente fue nombrado profesor de cirugía con la responsabilidad de explicar cirugía y anatomía. A los pocos días ya había llamado la atención entre alumnos y profesores ¿Por qué? Vesalio rompió con el método didáctico medieval: abandonó la enseñanza libresca de los glosadores de Galeno, bajó de su cátedra y se situó junto al cadáver, disecando y mostrando por sí mismo la parte a la que la explicación se refería.

Utilizó además dibujos que los alumnos le solicitaban y él creía adecuados. Este fue el origen de las Tabulae anatomicae Sex (Venecia, 1538). Los tratados de anatomía de entonces no solían contener ningún tipo de ilustración.

En 1539 con el fin de aportar claridad a una polémica sobre la sangría en las afecciones neumónicas monolaterales, el médico de Carlos V, Nicolás Florena, encargó a Vesalio una exploración disectiva del sistema venoso endotorácico. Descubrió así la vena azigos mayor y su desembocadura en la vena cava superior (si seguimos la idea galénica de la circulación de la sangre sería el origen y no el final). Publicó los resultados ese mismo año y también aceptó el encargo de la Giunta, una afamada casa editorial veneciana, para revisar la edición latina de varios escritos anatómicos de Galeno. Como se puede apreciar, nos encontramos con una de las características del Renacimiento: revisar y corregir. Concluyó el trabajo apenas un año después.

Su experiencia disectiva le demostró día a día que Galeno se equivocó en muchas ocasiones. El hecho de querer extrapolar a los humanos lo que veía en la disección de animales, le condujo a numerosos errores. Desde fines del siglo XIII algunos médicos europeos disecaron cadáveres humanos. Sin embargo, la tradición galénica pesaba tanto, que los disectores no lograban percibir la discrepancia existente entre lo que sus ojos veían y lo que su lengua y su pluma decían. Vesalio se comprometió a escribir un nuevo tratado de anatomía. En 1543 ya estaba redactado su conocido De humani corporis fabrica libri septem. Unos días después también terminó el Epitome, una especie de Fabrica compendiada para uso de los estudiantes.

El texto, al que se unieron trescientas planchas grabadas en madera por Kalkar, salieron en mula hacia Basilea al taller de Juan Oporino. Poco después vieron la luz los primeros ejemplares. La Fabrica iba dedicada al emperador Carlos V y el Epitome al que después sería Felipe II. Vesalio tenía entonces 29 años. La obra originó una reacción airada de algunos galenistas. Jacobo Silvio, su viejo maestro, le propinó calificativos como desvergonzado, impío, calumniador e ignorante.

Siguiendo la tradición familiar, Vesalio fue requerido por Carlos V para que formara parte de su servicio médico; por tanto, marchó a Bruselas. Allí se casó, ejerció la medicina y escribió. Tras abdicar Carlos V en 1556 pasó al servicio de Felipe II, lo que le obligó a trasladarse a Madrid en 1559. Su estancia no fue demasiado grata por cuestiones que no vienen al caso.

Ya hemos visto algunas novedades en la obra y la práctica de Vesalio: a) cambiar el método didáctico, b) el uso de ilustraciones, c) introducir correcciones a la obra de Galeno, y d) incorporar nuevos hallazgos. A esto hay que añadir que Vesalio vio de otra manera la anatomía o al cuerpo humano, una forma nueva que podemos llamar renacentista.

La Fabrica vesaliana muestra su idea descriptiva en su índice, en el orden sistemático que a su propia descripción quiso dar Vesalio. Comienza exponiendo la anatomía del esqueleto, lo que sustenta, las “vigas y las paredes de las casas”. El cuerpo es para él un edificio arquitectónico. Dedica el libro segundo a los ligamentos y músculos (lo que da forma al esqueleto y le permite moverse). Los libros tercero y cuarto a las venas, arterias y nervios (lo que une). En los libros quinto, sexto y séptimo se ocupa de los órganos que encierran la cavidad abdominal (instrumentos de la facultas naturalis), la torácica (instrumentos de la facultas vitalis) y la cefálica (instrumentos de la facultas animalis) y lo hace a la manera galénica, es decir, funcional.

Tres partes, por tanto:

  1. Sistemas edificativos o constructivos
  2. Sistemas conectivos o unitivos
  3. Sistemas animadores o impulsivos

La parte más brillante de la Fabrica es la que se refiere a la osteología. Se describe con detalle cada uno de los huesos. En la miología diferencia bien el ligamento del tendón, el nervio y el músculo, que hasta entonces era frecuente confundirlos. La parte dedicada a la angiología es bastante completa; niega rotundamente la existencia de la famosa rete mirabile. En cuanto a los nervios sigue clasificándolos en duros o motores y blandos o sensitivos. Niega la oquedad de los nervios de los sentidos y de forma especial la del nervio óptico.

Respecto a los órganos de la nutrición y generación sus descripciones de los genitales suponen un avance. Describe bien el peritoneo y el estómago, pero desconoce estructuras como el páncreas. Habla por vez primera de la estructura interna del hígado.

En lo que se refiere a los órganos de la cavidad vital o torácica merece ser mencionada la descripción del corazón. Niega la existencia de los “agujeros” interventriculares pero su esquema de la circulación de la sangre sigue siendo galénica.

La descripción de los órganos de cavidad animal o craneal es cuidadosa. Destruye la concepción errónea de los tres ventrículos del cerebro, y señala la diferencia entre la sustancia gris y blanca del encéfalo entre otras cosas.

En definitiva, Vesalio no sólo enseñó más y mejor la anatomía, sino que también enseñó a hacerlo de otro modo, un modo totalmente renacentista.

Es casi imposible encontrar entre los historiadores de la medicina una opinión sobre Vesalio que no sea la que hemos expuesto. Sin embargo, en 1994, el catedrático ya jubilado de anatomía de la Universidad de Valencia (España), Juan José Barcia Goyanes (1901-2003), publicó el libro El mito de Vesalio. En éste expone la idea de que, en cuanto a contenido anatómico, Vesalio hizo poco por el avance de la anatomía. Para Barcia éste no sólo se limitó a descubrir los errores de Galeno sino que hizo de ellos toda la razón de ser de su investigación anatómica. Esta obra no es fruto de la especulación sino que su autor trata de demostrar lo dicho a través de sus doscientas cuarenta y una páginas. Hay que señalar que el profesor Barcia era conocedor, al menos, de las mismas lenguas clásicas que Vesalio y entre sus obras destaca la Onomatologia anatomica nova, una compilación de los términos anatómicos que aparecen en los textos clásicos griegos y latinos y su evolución a lo largo de la historia; alcanza ésta una extensión de diez volúmenes. Una cosa es cierta, este libro nos hace reflexionar y nos hace ver lo importante que es considerar la ciencia como un producto en cuya realización contribuyeron y contribuyen muchas personas.

Bibliografía

–Ballesteros Massó, R. (2015). Iconografía de Andrés Vesalio, el nacimiento de una idea. Madrid, Universidad Complutense [Tesis]

–Barcia Goyanes, J.J. (1994). El mito de Vesalio. Valencia, Real Academia de Medicina-Universitat de València.

–Barón Fernández, J. (1970). Andrés Vesalio. Su vida y su obra. Madrid, CSIC.

–Duffin, J. (2000). History of Medicine. Houndmills-London, Macmillan Press.

–Huard, P. ; Imbault-Huart, M.J. (Eds). (1983). Andrés Vesalio: iconografía anatómica : fábrica, epítome, tabulae sex. Madrid, Laboratorios Beecham

–Laín Entralgo, P. (1951). La anatomía de Vesalio. Archivos Iberoamericanos de Historia de la Medicina, vol. 3, nº 1, pp. 85-147.

–Laín Entralgo, P. (1948). La anatomía de Vesalio y el arte del Renacimiento. Revista de Ideas Estéticas, nº 21, pp. 3-26.

–O’Malley, Ch.D. (1964). Andreas Vesalius of Bruselas, 1514-1564. Los Ángeles, University of California Press.

–Olmedilla y Puig, J. (1913). Andrés Vesalio (médico de Carlos I y eminente anatómico y escritor del siglo XVI). Madrid, Administración de la Revista de Medicina y Cirugía Prácticas.

–Riera Palmero, J. (2015). V Centenario del Nacimiento de Andrés Vesalio (1514-1564). Llull: Revista de la Sociedad Española de Historia de las Ciencias y de las Técnicas, vol. 38, nº 82, pp. 399-404.

El doctor Moliner

Con motivo de haber subido nuevo vídeo al canal de Youtube “Medicina, historia y sociedad”, insertamos en este blog la transcripción del anterior vídeo, dedicado en esa ocasión al doctor Moliner o Francisco Moliner y Nicolás (1855-1915).

[Intro]
“Estoy frente al Hospital que hoy se llama Dr. Moliner. Fue inaugurado el 15 de julio de 1899 en las dependencias de la antigua Cartuja, en la sierra Calderona, como Sanatorio de Porta-coeli. Estaba destinado a los enfermos pobres.

Tras la guerra civil, las habitaciones de los enfermos de un hospital todavía en construcción, se convirtieron en celdas y su patio en zona de reclusión. Llegaron a concentrarse más de diez mil presos políticos.

El actual hospital se reconstruyó a finales de 1942 como Sanatorio Nacional Antituberculoso dado que la TBC volvió a convertirse en un problema. En 1943 fue adquirido por la Diputación provincial. En 1987 fue adscrito al INSALUD y se destinó a enfermos crónicos de media y larga estancia y terminales.

Tras este “Sanatorio” se encuentra la voluntad de un médico valenciano que luchó siempre por los derechos de los enfermos pobres y la “reconstrucción” de una verdadera sanidad pública y de la enseñanza de la medicina. A pesar de los pocos logros que consiguió, luchó incansablemente hasta el día de su muerte manteniendo sus principios. Nos referimos al conocido como Doctor Moliner, o Francisco Moliner y Nicolás.

[Rótulo]
Ya existían los sanatorios antituberculosos para las clases acomodadas, como el de Busot, y para niños, como el de Chipiona, pero no para las clases trabajadoras y pobres. Moliner también quería acoger a los soldados enfermos repatriados a la península desde Ultramar.

Moliner propuso la creación de sanatorios para ellos donde la disciplina, una buena alimentación, aire limpio, sol y reposo, les devolvería la salud. De lo contrario supondrían un peligro para toda la sociedad.

Creía que los gastos debían correr a cargo del estado, las instituciones provinciales y locales. Sabía que era difícil pues denunció que el estado dedicaba la irrisoria cantidad de 480.000 pesetas a la Sanidad, de las cuales 350.000 se dedicaban a sueldo del personal.

Moliner comenzó la campaña de 1 céntimo diario que convenció a a 14.000 obreros valencianos. A ellos se sumaban algunas donaciones y las colectas organizadas por los estudiantes.

Las obras del sanatorio comenzaron en 1898.

Obtuvo el favor (sólo eso) de la protección de la reina regente y de su hijo. Se nombró una junta de patronos. José Juan Dómine presentó el proyecto en la Conferencia Internacional Antituberculosa que se celebró en Berlín en 1899.

Moliner era el director, José Chabás (que después creó una revista especializada en tuberculosis) era el jefe clínico. Había además un practicante, un farmacéutico, dos enfermeros, dos ordenanzas, dos limpiadoras, dos cocineras, un repostero, un pinche, un mozo de limpieza, dos sirvientes de cocina, una jefa de comedor y dos camareros.

A finales de 1899 el gobierno declaraba de utilidad pública el Sanatorio y aceptaba una propuesta de ley para convertirlo en nacional.

En mayo de 1901 se habían atendido a 320 enfermos. Algunos médicos criticaron el derroche de dinero ofreciendo seis comidas abundantes a los pacientes.

Al no recibir subvenciones oficiales de forma regular el sanatorio tuvo que cerrar en 1902 con unos treinta enfermos.

En 1905 logró que el rey visitara el centro. Le hizo promesas como una subvención de 25 millones de pesetas, que, por unas razones u otras, tampoco se cumplieron.

Esbozo biográfico
Francisco Moliner nació en Valencia en 1855 y no en 1851 como se suele decir en algunos textos, en el seno de una familia acomodada. Estudió el bachillerato en el Instituto de Segunda Enseñanza de Valencia.

Se matriculó después en la Facultad de Medicina. En 1874 consiguió una plaza de alumno interno y en 1876 obtuvo la licenciatura con la calificación de sobresaliente y premio extraordinario. Cursó el doctorado en Madrid, grado que ganó en 1878 con la tesis “De la bomba del estómago y sus aplicaciones generales”. En la misma describe las propiedades exploratorias y terapéuticas del aparato ideado por Kussmaul y Weiss.

Ese mismo año ganó por oposición la plaza de Ayudante del Disector del Museo Anatómico de Valencia. En 1880 ganó la de profesor clínico, puesto que ocupó hasta 1883 cuando ganó las oposiciones a la cátedra de Patología de la Universidad de Zaragoza. En junio obtuvo la cátedra de Obstetricia de Granada y el 16 de julio la permutó por la de Fisiología de Valencia.

En Valencia vivió activamente la epidemia de cólera de 1885. Se declaró seguidor de la nueva bacteriología, pero se enfrentó a Ferrán y a Amalio Gimeno y seguidores por “problemas en la experimentación” y “falta de fiabilidad de las estadísticas”. Se enfrentó así a una serie de personas que luego se encontraría en el camino. Quizás los directores generales de sanidad Cortejarena y Pulido fueron poco receptivos en atender sus peticiones por ese motivo. Es difícil afirmarlo, pero conociendo el carácter patrio no sería extraño. Contrapuso a la vacunación, un método para el tratamiento del cólera, denominado “lavado de la sangre”, que pretendía la disolución de las toxinas microbianas y su posterior eliminación por la orina, mediante la inyección endovenosa de grandes cantidades de suero salino.

En 1887, tras el fallecimiento de José Crous, pasó a ocupar la cátedra de Patología especial de Valencia hasta 1908. En 1889 publicó Lecciones clínicas dadas en la Facultad de Medicina durante el curso 1888 a 1889.

Poco a poco los intereses de Moliner se desplazaron hacia temas médico-sociales. En 1890 pronunció el discurso inaugural del Instituto Médico Valenciano: Necesidad de crear cátedras de Medicina popular. Ese mismo año fue comisionado por el Ayuntamiento y la Academia para que fuera a Alemania a estudiar el procedimiento de Koch contra la tuberculosis.

En 1893 publicó Tratado clínico de la pulmonía infecciosa. Ese mismo año fue nombrado rector de la Universidad.

En 1894 hizo hincapié en la importancia de “las granjas-sanatorios en el tratamiento de los tísicos pobres” y publicó dos años después su discurso “Aspecto social de la tuberculosis”, en el que defendió, principalmente, con datos epidemiológicos, que “la tuberculosis es una verdadera enfermedad social, por su extensión, por su naturaleza, por las condiciones biológicas de su germen, por su modo de propagación, por su distribución geográfica y social, por los problemas que provoca y por la terapéutica que reclama”.

En 1895 fue nombrado presidente del Ateneo Científico y Literario de Valencia. Inauguró el curso con la conferencia Aspecto social de la tuberculosis.

En otoño de 1897 se produjeron abundantes lluvias en Valencia y ocasionaron el desbordamiento del río Turia. Las entidades culturales organizaron actos para recaudar dinero para ayudar a los damnificados. El Ateneo organizó una corrida de toros benéfica cuya presidencia fue aceptada por la reina regente. Mientras tanto fue nombrado rector. Se celebró la corrida y asistió a la misma como tal. Esto se consideró como una vergüenza nacional por la prensa de Madrid. El Gobierno consideró la corrida poco adecuada para un rector y lo destituyó.

En 1899 creó la Liga Nacional contra la tuberculosis y de socorro a los tísicos pobres en el seno del Instituto Médico Valenciano. Sus objetivos eran atender a los enfermos sin recursos y fomentar la creación de sanatorios para ellos. Pretendía extenderse por todas las provincias. Sin embargo fue languideciendo poco a poco.

Aquí situaríamos ahora todo lo dicho al principio del vídeo sobre el Sanatorio.

Tras el fracaso en parte del Sanatorio de Portaceli inició otra campaña para la creación de este tipo de sanatoriospopulares en todo el estado. A pesar de los miles de apoyos esta iniciativa tampoco se atendió.

Se presentó a elecciones por la “Candidatura médica independiente” con el fin de lograr, entre otras cosas, una ley para la protección de los tuberculosos pobres. Su insistencia y modos resultaron ser incómodos y se hizo lo posible para expedientarlo e incapacitarlo.

El 8 de abril de 1905 presentó su dimisión de la cátedra de Valencia por falta de medios para enseñarla. Su renuncia no fue aceptada.

En 1908 publicó Por la enseñanza y la salud. Mostraba su indignación porque las cortes habían denegado cinco millones para la mejora de la enseñanza y concedido doscientos para la marina de guerra. Incitaba a los estudiantes valencianos a que reclamasen un empréstito de cien millones para la enseñanza y la salud pública.

Encabezó las revueltas de los propios estudiantes y el gobernador le mandó encarcelar junto a ellos. Estuvo un mes encerrado, lo que le supuso la separación de la cátedra.

En 1909 pidió la creación de un ministerio de sanidad independiente, lo que fue desestimado.

En 1911 escribió el folleto Pidiendo una revisión en defensa de la verdad y de la justicia. En el mismo reivindicaba la cátedra y criticaba a quienes lo atacaron en los sucesos de 1908.

En 1914 se presentó de nuevo a diputado por el Partido Conservador. Siguió luchando por la defensa de los enfermos pobres, por la dignificación de la enseñanza y la sanidad pública.

Uno de sus últimos objetivos fue la aprobación de un proyecto de ley sobre epidemias.

Moliner falleció el 21 de enero de 1915 de una hemorragia cerebral.

En Madrid fue trasladado desde la casa mortuoria hasta la Estación de Mediodía. A los lados del coche mortuorio iban los porteros del Congreso con hachas encendidas. La presidencia estaba compuesta por los presidentes del Consejo de Ministros y del Congreso de Diputados. El ministro de Gobernación, el hijo de Moliner, el alcalde de Valencia, los doctores Pulido, Cortezo y Albiñana.

Su entierro en Valencia fue un auténtico acontecimiento social, fiel reflejo de la popularidad y del gran aprecio que el pueblo valenciano sentía por Moliner. Presidió el capitán general, el arzobispo, el gobernador civil, el alcalde y demás autoridades. En una segunda presidencia estuvieron el decano de la Facultad de Medicina, el presidente de la Academia, del Instituto Médico y representantes de la Casa del Pueblo y de los escolares.  En el cementerio leyeron discursos el hijo de Moliner y su fiel seguidor el doctor Albiñana.

Monumento y calle homenaje a Moliner en Valencia
Inmediatamente se formó una junta pro-monumento a Moliner. Fueron llegando las donaciones. En 1916 se hizo un concurso que ganó el escultor José Capuz. Sin embargo, tardó en realizarla al surgir numerosos problemas. Debió terminarse en 1920 o 1921. Se montó sin inauguración.

En el centro aparece la figura de Moliner revestido con toga universitaria sobre un pedestal en el que figura la inscripción “PAZ Y ARMONÍA SOCIAL POR EL AMOR Y LA CIENCIA”. Abajo, “AL DR. MOLINER”. A ambos lados le flanquean dos matronas que simbolizan el amor y la ciencia. Ambas recostadas sobre enormes volutas. En la trasera existe un relieve que deja constancia de la fecha. En torno al monumento se dispuso después una alberca con juego de surtidores e iluminación nocturna (1972).

Valencia le dedicó también una calle en 1924, la actual calle Sueca. Después se cambió por otra que va desde Micer Mascó (antes Luis Simarro) al actual Blasco Ibáñez a la altura del Hospital Clínico y la Facultad de Medicina. Data de 1936 y fue solicitada por el concejal médico García Brustenga.

Bibliografía

–Ayuntamiento de Valencia. Sesión de Ayer. Las Provincias, 29 de mayo de 1924, p. 3.

–De las Heras Esteban, H. (2001). El monumento al Dr. Moliner en la Alameda de Valencia, obra del escultor José Capuz Mamano. Archivo de Arte Valenciano, nº 81, pp. 109-115.

–El doctor Moliner. Heraldo de Madrid, 21 de enero de 1915, p. 1

–El doctor Moliner. La Hormiga de Oro, 30 de enero de 1915, pp. 8-10.

–Fresquet Febrer, J.L. (2012). Dr. Moliner: la corrida de toros que le costó el rectorado. En Medicina, historia y sociedad. Disponible en: https://historiadelamedicina.wordpress.com/2012/11/08/dr-moliner-la-corrida-de-toros-que-le-costo-el-rectorado/, consultado el 12 de mayo de 2020.

–La Unión Ilustrada, 31 enero de 1915, pp. 20

–Lo que dice Capuz. El monumento al Dr. Moliner. Las Provincias, 16 de agosto de 1919, p. 2.

–La Ilustración Artística, 1 de febrero de 1915, p. 107.

–Manaut Noigués, J. Un monumento “paz y armonía social por el Amor y la Ciencia”. La Esfera: ilustración mundial, 8 de octubre de 1921, p. 23.

–Micó Navarro, J. (1991). Francisco Moliner y Nicolás (1851-1915), fundador de la moderna patología respiratoria en Valencia y del sanatorio antituberculoso de Porta-coeli. Médicos, nº 36, pp. 7-9.

–Molero Mesa, J. (1990). Francisco Moliner y Nicolás (1851-1915) y el inicio de la lucha antituberculosa en España. Asclepio, vol. 42, pp. 253-279.

Mundo Gráfico, 27 enero de 1915, p. 15.

–Perales Birlanga, G. (2009). Católicos y liberales. El movimiento estudiantil en la Universidad de Valencia (1875-1939). Valencia, Publicacions de la Universitat de València.

–Perales Birlanga, G. (2012). Francisco Moliner y Nicolás, de la cátedra al escaño. Matrícula y lecciones: XI Congreso Internacional de Historia de las Universidades Hispánicas, Valencia, Universitat de València, vol. 2, pp. 157-175.

–Peydró Olaya, A. (). Recuerdo histórico académico del Excmo. Sr. Prof. D. Francisco Moliner Nicolás, fundador del Sanatorio Antituberculoso de Portacoeli, con motivo del centenario de su fallecimiento. Anales de la Real Academia de Medicina de la Comunitat Valenciana, 15, disponible en: https://www.uv.es/ramcv/2015/6_16_128_Amando_Peydro.pdf, consultado el 12 de mayo de 2020.

–Toro, M. de (2019). El campo de concentración de Portaceli (1939-1942). En elestado.net Comunicación contra la desinformación. Disponible en https://elestado.net/campo-concentracion-portaceli/ Consultado el 15 de mayo de 2020.

–VV.AA. El Camp de Concentració de Portaceli (1939-1942). Tavernes Blanques, València, L’Eixam Edicions.