Opoterapia II

Insertamos el guión del vídeo “Opoterapia II” con su correspondiente bibliografía, al haber subido un nuevo vídeo al Canal Medicina, historia y sociedad.

“La farmacología y la terapéutica del siglo XIX sufrireron grandes cambios después de los descubrimientos de la química y de la fisiología. Se aislaron los principios activos de los productos naturales y se comprendió mejor su acción y efectos sobre el organismo. Esto hizo posible también la aparición de nuevos medicamentos mediante síntesis, lo que Paul Ehrlich denominó quimioterapia.

Pero nosotros vamos a centrarnos en este segundo vídeo en la opoterapia, con el que cerraremos la también segunda temporada del canal “Medicina, historia y sociedad”.

[INTRO]

En la historia de la opoterapia hay un nombre importante: Charles Brown-Sequard (1817-1894), discípulo de Claude Bernard que le sucedió en el College de France. Se formó en París donde fue profesor de fisiología. Marchó después a los Estados Unidos donde también fue profesor de fisiología en la Universidad de Richmond desde 1854. Mas tarde, desde 1864 fue profesor en Harvard y en 1869 fue encargado del curso de patología experimental y comparada de la Universidad de París. En 1872 regresó a los Estados Unidos. Cuando murió Claude Bernard le sucedió en el Collège de France.

Glándula suprarrenales

Brown-Sequard demostró la acción a distancia de los productos segregados por las glándulas suprarrenales. El llamado síndrome de Addison (hipotensión, astenia, anorexia, pigmentación cutánea) se presentaba también en perros, conejos y gatos.

John J. Abel y Albert C. Crawford, igual que hicieron los alemanes S. Fränkel y Otto von Fürtth (de forma separada) aislaron productos cuyos efectos eran parecidos. En 1900 el químico japonés Jokichi Takamine consiguió purificar más el extracto y que llamó “adrenalina” a la sustancia cristalina. Sin embargo, ésta no era suficiente para curar el Addison.

La investigación demostró la secreción de otra hormona por la corteza suprarrenal. Cuando se administraban extractos de ésta mejoraba la enfermedad. Poco a poco fueron descubriéndose 26 esteroides. Edward Calvin Kendall (1886-1972) y su equipo de la Clínica Mayo aislaron varios compuestos. Finalmente halló uno que aliviaba la artritis reumatoide al que llamó cortisona. De Parke Davis recibió extractos de suprarrenal de buey de los que entre 1933 y 1936 logró aislar 30 compuestos de los que logró purificar 5. En 1936 Seyle relacionó estas sustancias con el concepto de “reacción de alarma” o adaptación del organismo al estrés.

Durante la Segunda guerra mundial se trabajó de forma intensiva en lograr la síntesis de estas sustancias. El profesor F.C Kuch de la Universidad de Chicago, logró con Kendall mostrar que se trataba de un esteroide. Con la ayuda de las compañías Merck, Armoury y el laboratorio Upjohn, se comenzó la producción de la cortisona por vía parenteral. En mayo de 1949 Upjohn pudo lograr la presentación oral. Tadeus Reichstein, Edward Kendall y el médico Phillip Hench recibieron el Premio Nobel de Medicina en 1950.

A partir de ahí se abrieron nuevos horizontes terapéuticos para varias enfermedades.

La testosterona

Brown-Sequard también fue conocido por haber utilizado extractos de órganos como el del testículo. Utilizó este último en personas que habían perdido la vitalidad o en personas mayores. Llegó a inyectarse por vía subcutánea una mezcla acuosa de jugo de testículo con sangre de los vasos espermáticos con el fin de “Mantener una juventud eterna”, una quimera como pronto se dieron cuenta.

Las sustancias que el testículo vertía a la sangre controlaban la aparición de los caracteres sexuales secundarios. En 1902 Bayliss y Starling pusieron el nombre de hormona a estas sustancias. También vieron, entre otras cosas que, mezclando alimentos parcialmente digeridos con ácido clorhídrico, activaba una sustancia química en el duodeno que llamaron secretina debido a la secreción del jugo pancreático.

Más tarde en 1935, Ernst Laqueur (Ámsterdam) aisló la testosterona y Adolf Butenandt (Gdansk) y Leopold Ruzicka (Zürich) la sintetizaron luego. Esto se logró en los albores de la Segunda Guerra Mundial, gracias al apoyo de las farmacéuticas. En este trabajo participaron científicos nazis que posteriormente pudieron seguir trabajando en sus laboratorios.

Podríamos hablar de los usos y abusos de las hormonas androgénicas, pero no lo haremos porque es un tema conocido y no disponemos de tiempo para hacerlo.

La secreción excesiva de la tiroides se propuso también como enfermedad: el bocio o bocio exoftálmico (hipertrofia tiroidea acompañada de exoftalmia, anemia e hiperfuncionalismo.

La glándula tiroides

En el año 1656 Thomas Wharton, un anatomista inglés, describió la tiroides a la que se atribuían diversas secreciones y funciones. Tanto el bocio (hipertrofia de la glándula) como el cretinismo (atrofia, ausencia de la glándula) se trataron con sales marinas. William Gull fue quizás de los primeros en describir el mixedema con el nombre de “condición cretinoide en el adulto” (1873) relacionando la enfermedad con el tiroides. No fue la primera, pero sí fue la pionera en atribuir las causas clínicas al tiroides.

Cirujanos como Theodor Kocher que extirpaban el tiroides vieron que algunos pacientes desarrollaban cretinismo (niños) o mixedema (adultos). William Miller Ord (1834-1902) dirigió un comité que revisó numerosas historias clínicas y las consecuencias de tiroidectomías en animales. Después Moritz Schiff (1823-1896) describió la tetania en perros cuando se les extirpaba la glándula tiroides experimentalmente; en 1884 descubrió que podía prevenirse si se injertaba tejido tiroideo en el abdomen.  Utilizó con éxito extracto de tiroides para tratar a los humanos.

Victor Horsley (1857-1916), que trabajó con monos, se mostró partidario del injerto tiroideo como tratamiento de la hipofunción tiroidea, específicamente de tiroides de oveja para tratar el mixedema y el cretinismo. Antonio Maria Bettencourt Rorigues (1854-1933) y José Antonio Serrano (1851-1904) de Lisboa, hicieron el experimento, insertando la mitad de la tiroides de una oveja por vía subcutánea en la región inframamaria a cada lado de uno de sus pacientes. Descubrieron que el injerto funcionó de inmediato, antes de que pudiera haberse vascularizado, y concluyeron que su efecto probablemente se debió a la simple absorción de jugo de la glándula injertada, una conclusión de extraordinaria importancia. Después utilizaron inyecciones hipodérmicas de extracto de tiroides. 

Sus hallazgos fueron eclipsados ​​por el artículo posterior de George R. Murray (1865-1939) publicado en el más conocido British Medical Journal. También utilizó inyecciones de extracto de tiroides de oveja. Más tarde se pasó a la vía oral. 

Los efectos producidos en casos de mixedema por una cantidad relativamente minúscula de extracto de tiroides, la rapidez con la que desaparecen todos los síntomas característicos y la extraordinaria mejoría, tanto en la condición física como mental, de los cretinos esporádicos, son muy importantes.

La tiroxina fue aislada en 1915 por Edward Calvin Kendall (1886-1972) (en realidad, el día de Navidad de 1914). Su estructura química fue determinada en 1926 por Charles Harington, y fue sintetizada por Harington y George Barger en 1927. Sin embargo, pasó mucho tiempo antes de que fuera sintetizado sobre una base comercial. Al principio, se necesitaban 3 toneladas de tiroides de cerdo para aislar solo 33 gramos de tiroxina pura. Incluso cuando la tiroxina estuvo disponible comercialmente en Glaxo en 1949, las tabletas de extracto de tiroides desecado siguieron siendo la principal fuente de tratamiento durante muchos años.

La triyodotironina (T3) fue identificada, aislada y sintetizada en 1952/53 por Jack Gross, de Canadá, y Rosalind Pitt-Rivers, de Londres) pero, hasta hace relativamente poco tiempo, se utilizaba sólo en el tratamiento del coma mixoedematoso. 

La secreción excesiva de la tiroides se propuso también como enfermedad: el bocio o bocio exoftálmico (hipertrofia tiroidea acompañada de exoftalmia, anemia e hiperfuncionalismo cardíaco, caracterizada por temblor, irritabilidad mental, debilidad muscular y otros transtornos generales orgánicos). Descrito por Robert Graves y Carl von Basedow

En España, tal como ha estudiado Carla Aguirre el primer artículo que se publicó sobre el tratamiento del mixedema se debe a Martín Salazar en la Revista de Sanidad Militar en 1893. Más tarde Lobo Regidor publicó otro y Muga Machado lo incluyó como capítulo en su libro Idea general del método de Brown-Sequard.

Un texto clásico que se tradujo al castellano es el de los Medicamentos animales, de Paul Carnot, de la Biblioteca Terapéutica de Gilbert y Carnot.

El texto se refiere a:

A) Productos fisiológicos naturales que se encuentran en animales normales y son fabricados por el organismo en el curso de su funcionamiento normal.

B) Productos de reacción o anormales que proceden de animales preparados especialmente y que se fabrican de forma artificial para luego usarlos terapéuticamente.

Del grupo A):

1.Alimentos, secreciones externas (jugo gástrico, bilis, etc.) y secreciones internas.

–Directamente activas como los extractos de cápsula y de médula suprarrenal, de tiroides, etc.

–Secreciones internas excitantes de las glándulas sinérgicas (hormonas) como la secreción interna del ovario, de la placenta, etc.

2. Complementos que se encargan de activar un producto orgánico por sí mismo inactivo como la enteroquinasa que activa el jugo pancreático.

3.Productos antagónicos como la adrenalina para aumentar la presión arterial.

del grupo B)

1.Anticuerpos para provocar inmunidad pasiva

2.Anacuerpos para reforzar la acción nociva de los microbios y de sus productos tóxicos.

Hoy las cosas habrían cambiado bastante. Se hablaría de “Farmacología endocrinológica” que contendría estos apartados:

  1. Opoterapiao el estudio de las hormonas elaboradas por las glándulas de secreción interna.
  2. Introducción de modificaciones estructurales en la molécula de la hormona natural para facilitar su uso sustitutivo o para conseguir una selectividad de efectos.
  3. Sustancias que modifiquen farmacológicamente el equilibrio hormonal normal o perturbado del organismo.

Ejemplos de medicamentos de opoterapia: Se muestran los siguientes:

Hepatina (extracto de hígado)

Polihormina (Instituto Llorente) (ovario, testículo, hipófisis, tiroides, suprarrenal

Hipofisina (Instituto Llorente): Hipófisis desecada, para el crecimiento, el tono vascular, diuresis, metabolismo de los hidratos de carbono, adiposis, etc.

Tiro-Ovarina: ovario seco y tiroides seco

Orquina (Instituto Llorente): Extracto glicérico del testículo

Bibliografía

–Ackerknecht, E. Therapeutics. From the Primitives to the 20th Century, New York-London, MacMillan Pub., 1973.
–Aguirre Marco, C.P. Del medicamento específico a la panacea: la introducción de la tiroidoterapia en España, 1893-1898, En: Actes de les V Trovadse d’Història de la Ciencia i de la Técnica, 2000, pp. 253-258.
–Aguirre Marco, C.P. Patología tiroidea antigua y nueva a la luz de la mentalidad fisiopatológica. Las lecciones sobre el bocio de Santiago González Encinas (1833-1887) y de Federico Rubio Gali (1827-1902), Cronos, 3 (1), 173-182.
–Dioscórides, Plantas y remedios medicinales (De materia medica), Edición de Manuela García Valdés, 2 vols., Madrid, Gredos, 1998.
–Dubler, C.E. La “Materia médica” de Dioscórides. Transmisión medieval y renacentista. 5 vols., Barcelona, Tip. Emporium, 1935.
–Esplugues, J. et al. Perspectivas actuales de la terapéutica hormonal, Valencia, Ed. Saber, 1972.
–Laguna, A. Pedacio Dioscorides Anazarbeo, acerca de la materia medicinal, y de los venenos mortiferos, Traducido de la lengua Griega, en la vulgar Castellana, e illustrado con claras y substanciales Annotationes, y con las figuras de innumeras plantas exquisitas y raras, por… Salamanca, Por Mathias Gast, 1570. (Primera edición de 1555).
–Burn, H. Las drogas, los medicamentos y el hombre, Buenos Aires, Editorial Universitaria, 1965.
–Fresquet Febrer, J.L. La farmacoterapia en la sociedad española del siglo XIX, Valencia, Universitat, 1987.
–Fresquet Febrer, J.L.; Aguirre Marco, C.P. La cirugía en la Historia. La revolución quirúrgica y la cirugía científica, Valencia, manuscrito.
–Fresquet Febrer, J.L. Del medicamento natural al medicamento de síntesis, En: Martínez Calatayud, J (coord.), Ciencias farmacéuticas. Del amuleto al ordenador. Valencia, Fundación Universitaria San Pablo CEU, 1998.
–García Ballester. L.  Galeno en la sociedad y en la ciencia de su tiempo. Madrid, Ed.Guadarrama, 1972 a.
–García Ballester, L.  Galeno. En: Historia Universal de la Medicina, (dir. P. LAIN), vol. 2, Madrid, Salvat, 209-269, 1972 b.
–Ghalioungui, P. La medicina en el Egipto faraónico, En: Laín, P. (dir.) Historia Universal de la Medicina, Barcelona, Salvat, 1972, vol.1, pp. 95-128.
–Goodman L.S; Gilman, A. Bases farmacológicas de la terapéutica. 5ºed. México, Interamericana., 1978.
–Guerra, F. La materia médica en el Renacimiento, En: Laín, P. (dir.) Historia Universal de la Medicina, Barcelona, Salvat, 1973, vol. 4, pp. 131-150.
–Haeger, K. Historia de la cirugía, Madrid, Editorial Raíces, 1993.
–Isidoro de Sevilla (San), Etimologías. Edición bilingüe preparada por José Oroz Reta y Manuel-A. Marcos Casquero. 2 vols., 2ª ed., Madrid, 1994.
–Laín Entralgo, P. Historia de la medicina moderna y contemporánea, Barcelona-Madrid, Editorial Científico-médica, 1963.
–Laín Entralgo, P. Historia de la Medicina. Barcelona, Salvat, 1977.
–Laín Entralgo, P. La medicina hipocrática. 1ª reimpr. Madrid, Alianza, 1987.
–Litter, M. Compendio de farmacología, 5ª reimpr., Buenos Aires, El Ateneo, 1975.
–López Piñero, J.M. Ciencia y técnica en la sociedad española de los siglos XVI y XVII. Barcelona, Labor, 1979.
–López Piñero, J.M. Ciencia y técnica en la sociedad española de los siglos XVI y XVII. Barcelona, Labor, 1979.
–López Piñero, J.M. Introducción a la “Historia Medicinal de las cosas que traen de nuestras Indias Occidentales” (1565-1574), de Nicolás Monardes. Madrid, Ministerio de Sanidad y Consumo, 1989.
–Manquat, A. Tratado elemental de terapéutica, materia médica y farmacología… traducido de la cuarta edición francesa, 2 vols., Barcelona, Salvat e Hijos, ca. 1900.
–Murga Machado, L., Idea general del método de Brown-Séquard, Sevilla, F. Díaz, 1894.
–Medvei, V.C. A History of Endocrinology, Lancaster, MTP Press Limited, 1982.
–Peset, J.L. Terapéutica y medicina preventiva, En: Laín, P. (dir.) Historia Universal de la Medicina, Barcelona, Salvat, 1973, vol.5, pp. 99-105.
–Peset, J.L. Terapéutica y farmacología en el Romanticismo, En: Laín, P. (dir.) Historia Universal de la Medicina, Barcelona, Salvat,1973, vol.5, pp. 331-337.
–Peset Cervera, V. Terapéutica, materia médica y arte de recetar, 2ª ed.2 vols., Valencia, Imprenta de Francisco Vives Mora, 1905.
–Pitt-Rivers, R.; Vanderlaan, W.P. The therapy of thyroid diseases, En: Parnham, M.J., Bruinvels, J. (ed.) Discoveris in Pharmacology, Amsterdam, Elsevier, vol.2, pp. 391-428.
–Plans y Pujol, F. Lecciones de Historia natural aplicada a la farmacia y de materia farmacéutica, Barcelona, Imprenta de Jaime Jepús Roviralta, 1867.
–Plans y Pujol, F. Lecciones de zoología farmacéutica, Barcelona, Librería de Luis Niubó., 1870.
–Riera, J. Cirugía y terapéutica del Barroco, En: Laín, P. (dir.) Historia Universal de la Medicina, Barcelona, Salvat, 1973, vol.4, pp. 357-366.
–Szpilfogel, S.A. The adrenal hormones. Adrenocortical steroids and their synthetic analogues, En: Parnham, M.J., Bruinvels, J. (ed.) Discoveris in Pharmacology, Amsterdam, Elsevier, vol.2, pp. 253-284.
–Tausk, M. The emergence of endocrinology, En: Parnham, M.J., Bruinvels, J. (ed.) Discoveris in Pharmacology, Amsterdam, Elsevier, vol.2, pp. 219-152.
–Tausk, M. Androgens and anabolic steroids, En: Parnham, M.J., Bruinvels, J. (ed.) Discoveris in Pharmacology, Amsterdam, Elsevier, vol.2, pp. 307-320.
Tratados Hipocráticos. 3 vols. Madrid, Gredos, 1983.
–Ubeda y Correal, J. Estudio crítico de las preparaciones opoterápicas, Madrid, Tipolit. De J. Corrales, 1900.
–Zaragoza, J.R. La medicina de los pueblos mesopotámicos, En: Laín, P. (dir.) Historia Universal de la Medicina, Barcelona, Salvat, 1972, vol.1, pp. 67-93.

Opoterapia I

Insertamos el guión del vídeo Opoterapia I que se subió al canal Historia, medicina y sociedad, de Youtube, hace unas semanas.

Durante milenios la especie humana ha dispuesto de productos procedentes del reino vegetal, animal y mineral para curarse o protegerse de las enfermedades.

Hoy nos ocuparemos de la opoterapia, es decir, del uso de productos procedentes de los animales. Como el tema es extenso, presentaremos el tema en dos partes.

[INTRO]

En alguna tablilla sumeria del tercer milenio a. C. se habla de una serie de productos para tratar enfermedades. Entre estos se mencionan la leche, la piel de serpiente y la concha de tortuga.
 
Reginal Campbell Thompson, estudioso de la medicina mesopotámica, recogió una receta a base de productos animales: “mezcla de estiércol, de palomo, de cantáridas, harina de trigo y excrementos de gacela en la cerveza kurunnu; “extiende la mezcla sobre un lienzo, líalo sobre su pecho y la base de los pulmones, déjalo colocado durante tres días y curará”. Utilizaban estos productos por su propio valor intrínseco o bien por razones de tipo mágico. Este último tipo de uso perdura en nuestros días.
 
En el Egipto arcaico se utilizaron la bilis, la sangre, el cerebro, los excrementos y la carne de animales de especies indeterminadas y de otras como el asno, el murciélago, el gato, el cocodrilo, el pato, de algunos peces, etcétera.

En el Corpus hipocráticum encontramos también recetas que contienen productos procedentes de los animales; por ejemplo, se administraba como diurético una infusión de vino y miel con cantáridas a las que se quitaban las alas y las patas. La bilis de buey, en suspensión con miel, era un medicamento contra el “engurgitamiento intestinal”. La leche y el suero en los que se diluía cal, eran recomendados contra las diarreas.
 
De la época romana destacaremos, como no, la Materia médica de Dioscórides. En su libro segundo dice: “trataremos acerca de los animales, de la miel, de la leche, de la grasa y de los llamados cereales, también de las hortalizas, añadiendo a estas materias cuantas hierbas se usan de virtud aguda, porque tienen afinidad con ellas, como los ajos, las cebollas y la mostaza, para que no se separen la virtud de las cosas homogéneas”. Sus capítulos se ocupan de cosas tan distintas como el escorpión, los mejillones, la víbora, los chinches, los gusanos y partes de animales como el testículo de castor, el hígado de cabra o de asno, la pezuña de las cabras, el cuerno de ciervo, etc.

De aquí saltamos al Renacimiento, época en la que se revisaron los textos clásicos, como el de Dioscórides, y se añadieron sustancias procedentes de las Indias orientales, especialmente por los portugueses–, y de las occidentales –,especialmente aquellos que les enseñaron o aprendieron de los indígenas y los que los españoles adaptaron a los principios de la medicina de su tiempo, es decir, el galenismo.

La obra de Monardes, Historia medicinal de las cosas que se traen de nuestras indias occidentales, contiene, sobre todo, la descripción de productos vegetales, pero menciona también el armadillo, la piedra que se formaba en el buche de los caimanes y las que se encontraban en la cabeza de los tiburones. Más importancia se les concede a las piedras bezoares, concreciones calculosas que se forman en el aparato digestivo de los rumiantes. Se solían usar como contravenenos. También mencionó las alpacas, ciertos cangrejos, arañas, papagallos y unos gusanos que “sacaban de bajo tierra, los engordaban con hojas de maíz y después los cocían”.  Así elaboraban una especie de pasta que servía para curar el “fuego en el rostro” o “encendimiento de la sangre con picazón”.

Entre los siglos XIX y XX se recomendó en todos los estadíos y formas de tisis pulmonar exceptuando las febriles, en los catarros crónicos; en la escrofulosis, acompañada o no de lesiones diversas; en el raquitismo; hemeralopia epidémica (Disminución de la capacidad de visión durante el día o cuando hay luz muy intensa); clorosis; reumatismo crónico; estados de caquexia; y en convalecencias. Por vía externa en la lepra y diversas dermatosis.
 
Había de diversos colores, desde el casi transparente al marrón oscuro. Hacia mediados del siglo XIX se realizaron análisis químicos de los distintos tipos, determinando que el de color marrón claro era más terapéutico. Dependía de la temperatura y técnica de extracción.

John Hughes Bennett en 1841 publicó un tratado sobre el uso terapéutico del aceite de hígado de bacalao. Se trataba de un anatomopatólogo que describió la leucemia al mismo tiempo que lo hizo Virchow y la relacionó con la sangre y también describió la aspergilosis.
 
Ludovicus J. De Jongh también publicó un texto sobre las características de los distintos aceites. Viajó a Noruega con el fin de poder obtener el aceite más puro posible. De esta forma comenzó a comercializarse en toda Europa y a exportarse a los Estados Unidos el “Dr. Johngh’s light-brown Cod Liver Oil”. The most efficacious remedy for diseases of the chest, throat, debility, gout, rheimatism, rickets…”.

Sin embargo no pudo evitar el sabor y olor nauseabundo del preparado. En 1873 Alfred B. Scott vio la oportunidad de un nuevo negocio con la creciente demanda del aceite. En Nueva York comenzó a buscar con su socio Samuel Bowne una versión que tuviera mejor sabor. Mediante emulsión lograron un nuevo producto que cumplía con estos requisitos y que bautizaron como “Emulsión Scott”. La imagen de la marca era un hombre que llevaba un pez colgando en la parte posterior. En los ochenta ya se distribuía en toda América, Europa y Asia. En los primeros años del siglo XX era habitual que los niños tomaran una cucharada diaria de este aceite para tener un crecimiento saludable.
 
En 1879 la marca Scott y Bowne incluía las inciales PPP: perfecto, permanente y agradable al paladar. Las pequeñas gotas de aceite se cubrían con la glicerina que les confería el sabor dulce de ésta. Se vendía como un producto con el mismo paladar que la leche.

Por estas fechas, en 1890, los franceses Armand Gautier y Louis Mourgues publicaron su trabajo Les alkaloides de l’huile de foie de morue. Lograron aislar la butilamina, amilamina, hexilamina, la dihidrolutidina, asellina y la morrhuina.
 
En 1912 el bioquímico Casimer Funk (1884-19678) acuñó el término vitamina para referirse a algún nutriente que faltaba en ciertas enfermedades como el beriberi, la pelagra, el escorbuto y el raquitismo. Se investigó entre otras sustancias el aceite de hígado de bacalao. Elmer McCollum y Marguerite Davis, en la Universidad de Wisconsin, demostraron la existencia de un nutriente esencial en este aceite: la vitamina liposoluble A. Más tarde la vitamina liposoluble D. El descubrimiento de las vitaminas supuso un nuevo empuje para la venta de este producto. En 1927 Casimir Funk y Harry Dubin cuando trabajaban para los laboratorios HA Metz patentaron un procedimiento de extracción de las vitaminas A y D.
 
La síntesis química de las sustancias puso de nuevo en peligro al aceite de hígado de bacalao. En 1970 el médico danés Jorn Dyerburg estudió las dietas de los Inuit de Groenlandia y observó la baja incidencia en ellos de enfermedades coronarias. Se relacionó con el consumo de pescado. Esto abrió el camino a futuros estudios sobre los beneficios de los ácidos grasos omega 3. Los laboratorios Glaxo-Smith-Kleine, propietarios actuales de la patente de la Emulsión de Scott, volvieron a la ofensiva destacando las bondades de su producto en especial en lo que se refería a los efectos de los ácidos grasos Omega 3.
 
La emulsión Scott, pues, ha sobrevivido a sus creadores Scott y Beane que fallecieron en 1908 y 1910 respectivamente.


Bibliografía

–Bennett, J.H. (1841). Treatise on the Oleum jecoris aselli or Cod Ilver Oil. London: S. Highley.

–Cuenca-Estrella, M.; Barba, R. (2004). La medicina en el antiguo Egipto. Madrid, Alderabán Ediciones.

–De Jongh, L.J. (1843) Disquisitio comparativa chemico-medica de tribus olei jecoris aselli speciebus, quam, annuente summo numine, ex auctoritate rectoris magnifici…. Trajecti ad Rhenum, Eduard Fuhrl.

–DeLuca, H.F. (2016). Vitamin D: Historical Overview. Vitam Horm, vol. 100, pp. 1-20.

–Dubler, C.E. (1935). La “Materia médica” de Dioscórides. Transmisión medieval y renacentista. 5 vols. Barcelona, Tip. Emporium.

–Fresquet Febrer, J.L. (2001). El uso de animales y de productos de origen animal en el tratamiento de las enfermedades. En: Los animales en la ciencia y la vida humana. Ilustraciones zoológicas de un milenio (siglos XI-XX). Valencia, Fundación Bancaja, pp. 92-111.

–Gautier, A.; Mourgues, L. (1890). Les alkaloides de l’huile de foie de morue. Paris, G. Masson.

–Ghalioungui, P. (1972). La medicina en el Egipto faraónico. En: Laín Entralgo, P. (dir)., Historia Universal de la Medicina. Barcelona, Salvat, vol. 1, pp. 95-128.

–Hay, G.; Fadnes, L.; Holven, K.B.; Overby, N.C.; Madar, A.A.; Henriksen, C. (2020). New advice on vitamin D supplements and cod liver oil for infants. Tidsskr Nor Laegeforen, vol. 140, nº 16.

–Jones, G. (2018). The discovery and synthesis of the nutritional factor vitamin D. Int J Paleopathol, vol. 23, pp. 96-99.

–Laín Entralgo, P. (1987). La medicina hipocrática. Madrid, Alianza.

–Peset Cervera, V. (1906), Terapéutica, materia médica y arte de recetar con hidrología médica. 2ª ed., 2 vols. Valencia, Imprenta de Francisco Vives Mora.

–Semba R.D. (2012). On the ‘Discovery’ of Vitamin A. Annals of Nutrition & Metabolism, vol. 61 (3): 192–198.  

–Schiller, J. (1965). La transfusion sanguine et les Débuts de l’Académie des sciences. Clio Medica, vol. 1, pp.33-40.

Scott’s. About Scotts. Our story. Disponible en: https://www.scottskids.com/ph/our-story.html. Consultado el 15/2/2017.          

–Wendt, D. (2010). The Man with a Fish on his Back. Distillations. Chemical Heritage Foundation. Disponible en:https://www.chemheritage.org/distillations/magazine/the-man-with-a-fish-on-his-back. Consultado el 15/2/2017.

–Wolf, G. (1996). A history of vitamin A and retinoids. FASEB J, vol. 10, nº 9, pp. 1102-1107.

Historia de la ilustración anatómica II

Como siempre, al subir un nuevo vídeo al canal de Youtube Medicina, historia y sociedad, incluimos en este blog la transcripción del guión del anterior. Éste hace referencia a la segunda parte de la Historia de la ilustración anatómica.

[Intro]

Seguimos en este vídeo la historia de la ilustración anatómica que iniciamos en el inmediato anterior y cuyo enlace pueden encontrar aquí arriba (señalando)

Decíamos que el potencial del color en la metodología de la ilustración no se realizó plenamente hasta el último periodo.

Mostrábamos alguna de las extraordinarias láminas de Paulo Mascagni (1755-1815), prosector de Anatomía en la Universidad de Siena, como la del ‘tórax explotado’. Su Anatomia Universa (1823-1832) fue una obra completa de anatomía con cuarenta y cuatro láminas coloreadas a mano posiblemente por Antonio Serrantoni.

A continuación hablaremos del último periodo, de las reconstrucciones anatómicas por planos, de la divulgación de la anatomía y de los avances proporcionados por las nuevas tecnologías.

[Títulos]

El último periodo fue el que marcó  De basi encephali  de Soemmering  de 1778 hasta mediados del siglo XIX.

Una característica de esta fase es un mayor cambio hacia la anatomía de los órganos internos, a la luz de los nuevos descubrimientos realizados como resultado de un estudio más especializado.

La mecanización de la imprenta en el siglo XIX, junto con la invención y el desarrollo de la litografía, hizo que los textos y las ilustraciones pudieran producirse en masa y distribuirse ampliamente a través de redes de editores y libreros.

Con la introducción de la cromolitografía en la década de 1830, la ilustración anatómica alcanzó quizás su nivel más alto en el atlas de ocho volúmenes de Bourgery. 

Bourgery empezó a trabajar en su magnífico atlas en 1830 en colaboración con el ilustrador Nicolas Henri Jacob (1782-1871), un alumno del pintor francés Jacques Louis David. Los primeros volúmenes se publicaron al año siguiente, pero completar el tratado requirió cerca de dos décadas de esfuerzos; Bourgery consiguió culminar en vida su magna tarea, pero el último de los ocho volúmenes del tratado no se publicó en su totalidad hasta cinco años después de la muerte de su autor.

Los ocho volúmenes del tratado de Bourgery cubren la anatomía descriptiva, anatomía topográfica y técnicas quirúrgicas (con descripciones detalladas de casi todas las principales intervenciones que se realizaban durante la primera mitad del siglo xix), anatomía general, embriología y anatomía microscópica.

Aquí podemos contemplar unas láminas del primer volumen dedicado a la Osteología y Sindesmología (huesos, articulaciones y ligamentos). Aquí otras del segundo volumen sobre Miología, es decir, músculos, tendones y fascias.

Del tercer volumen consagrado a la Neurología (sistema nervioso central, periférico y vegetativo, así como los órganos de los sentidos) podemos observar estas láminas.

La Angiología (corazón, arterias, venas y sistema linfático) constituye el cuarto volumen. He aquí unas láminas del mismo.

Estas otras láminas son una muestra del quinto volumen dedicado a la Esplacnología constituido por las vísceras abdominales, aparatos digestivo y genitourinario.

Y estas otras lo son del sexto volumen sobre Anatomía quirúrgica o topográfica.

Estas lo son del séptimo volumen, también consagrado a la anatomía quirúrgica, que contiene interesantes láminas de procedimientos quirúrgicos con sus instrumentos. Por último, estas láminas son un ejemplo del octavo volumen dedicado a la Embriología, Anatomía comparada y Anatomía microscópica.

Todas las láminas del Traité se realizaron e imprimieron mediante la litografía, que significa “escritura o dibujo en piedra”. Esta técnica nació en Praga entre 1796 y 1798. Su descubrimiento supuso una auténtica revolución, ya que hasta entonces el único medio para reproducir una imagen era el grabado en hueco especialmente sobre cobre o en relieve sobre madera.

La litografía y su coste reducido significó que el número de litógrafos y de imprentas que la utilizaban creciera.

En un principio sólo se imprimió en blanco y negro. Las láminas de la primera edición se iluminaron a mano. En 1837 G. Engelmann registró la patente de la litografía en color (uso del rojo, amarillo, azul y negro). El procedimiento seguía siendo largo y costoso.

La segunda edición del Tratado se imprimió utilizando ya la cromolitografía. Se iban entregando a los suscriptores en grupos de 8 láminas y 8 hojas.

Por último señalar que cada volumen de láminas se acompañaba de un volumen de texto.

Por otro lado, el anatomista escocés John Bell, prefería y reivindicó un estilo sencillo adaptado a las necesidades de la enseñanza y la cirugía, frente a las pretensiones de los libros anteriores. La conocida Anatomía de Henry Gray de 1858, ilustrada por Henry Vandyke Carter, aspiró a un modo descriptivo simple.

La Grey’s Anatomy se editó y reeditó a lo largo de los años por sucesivos profesores. La primera edición es de 1858 con 363 dibujos. Apenas hay estilo, poco modelado en luces y sombras, ningún intento de colocar figuras en poses elegantes y sin fondos evocadores

En 1923, cuando se alcanzaron 22 ediciones, el libro había ganado 1378 páginas con 1256 ilustraciones, muchas en color. De las ediciones actuales queda poco de Gray.

A finales del siglo XIX las imágenes anatómicas se convirtieron en parte integral de la enseñanza de la anatomía.

Los cambios tecnológicos, sociales y culturales y otras circunstancias favorables permitieron el surgimiento de los ilustradores anatómicos profesionales. Aunque algunos de ellos no tenían formación anatómica solían adquirir conocimientos de esta y otras disciplinas médicas como la fisiología, la cirugía, la ginecología, etc.

Un ejemplo lo tenemos en el alemán Max Brödel que trabajó en la Escuela de Medicina de la John Hopkins University. Creó técnicas nuevas como la de polvo de carbón y tablero punteado para reproducir el tejido de forma más vívida. Incorporó el realismo de los tejidos con la anatomía transversal. Desarrolló un patrón instructivo y didáctico de ilustración médica y muchos le consideran el padre de la ilustración médica moderna.

Otro ejemplo es el también conocido Frank H. Netter, cirujano estadounidense y célebre ilustrador médico. Pronto se dedicó a esta última profesión en exclusiva. En su opinión, una ilustración médica tenía poco valor si no aclaraba bien los aspectos médicos que pretendía mostrar o explicar. Su obra cumbre fue su Colección de ilustraciones médicas (1948) para CIBA en un solo volumen. Después se amplió a 13 volúmenes con 4.000 ilustraciones.

De las ilustraciones anatómicas se compuso su Atlas de Anatomía (1989). Rápidamente se convirtió en uno de los preferidos de los estudiantes de muchos países. Se edita en 16 idiomas.

Aquí hojeamos el volumen 3, parte segunda dedicada al aparato digestivo.

También mostramos aquí un atlas de anatomía para que sea coloreado por el estudiante (Netter].

También queremos poner de relieve los textos que contienen láminas iluminadas, recortadas y superpuestas.

Aquí tenemos un ejemplo del texto G.A. Kuhff, doctor en medicina y preperador del Laboratorio de Antropología de la École des Hautes Études, ilustrado por Edouard Cuyer. Traducido y publicado en España por Baillière en 1880. Necesita restauración.

Esta idea se ha repetido después mucho antes de la aparición de las imágenes 3D generadas por ordenador. Yo como estudiante lo conocí con el nombre de Belorcio o una reconstrucción o atlas del cuerpo humano por planos. Muchos venían en bruto y el estudiante tenía que recortarlos, coloréalos y armarlos como complemento a las prácticas de anatomía.

Aquí vemnos reunidos los Belorcios de la Escuela anatómica de Escolar, utilizados en la enseñanza de la anatomía en Valencia bajo la dirección de Víctor Smith Agreda.

Esta idea se integró con facilidad en los libros desplegables –que hoy con la invasión del inglés llaman pop-up– y que muestran de forma más sencilla la estructura del cuerpo humano para niños. Los hay más cercanos a la realidad y los hay que explotan más los aspectos artísticos.

Los adelantos tecnológicos han contribuido a mejorar cada vez más las imágenes anatómicas. Los rayos X, la angiografía, la ecografía (la ecocardiografía, por ejemplo), la tomografía axial computerizada, la Resonancia magnética, la utilización de estas dos últimas con la ayuda de potentes ordenadores que permiten obtener imágenes 3D mediante reconstrucción volumétrica. Igualmente con el TAC y la Resonancia en combinación con la tomografía por emisión de positrones PET, se están desarrollando nuevas generaciones de imágenes digitales que representan los detalles estructurales en 3D de la anatomía viva.

No olvidemos la fotografía y la fotografía estereoscópica. A finales del siglo XX el cadáver de un condenado a muerte y el de una mujer desconocida que permanecían congelados en una mezcla de agua y gelatina sirvieron para hacer cortes transversales de 1 mm que luego se fotografiaron. Estas se usaron para crear modelos completos de cuerpos humanos masculinos femeninos. Las imágenes pasaron a formar parte de la National Library of Medicine que emprendió en 1989 el The Visible human project.

Aquí termina la síntesis de la Historia de la ilustración anatómica que hemos visto a través de dos vídeos. Por supuesto podría ampliarse a muchos más, pero nuestra intención es ofrecer una primera toma de contacto.

¡Hasta el próximo!

Bibliografía

–Hernández-Mansilla, J.M. (Juan Valverd de Amusco, a hombros de gigantes. Disponible en https://www.institutoeticaclinica.org/wp-content/uploads/Juan-Valverde-de-Amusco-a-hombros-de-gigantes.pdf Consultado el 12 de mayo de 2021.

–Choulant, L.; Frank, M.; Garrison, F.H.; Streeter, E.C. (1917)). History and Bibliography of Anatomic Illustration: In Its Relation to Anatomic Science and the Graphic Arts. Chicago,  University of Chicago Press.

–Choulant, L. (1852). Geschichte und Bibliographie der anatomischen Abbildung nach ihrer Beziehung auf anatomische Wissenschaft und bildende Kunst, Leipzig, Rudolph Weigel.

–Hansen, J.T. /2019). Netter. Cuaderno de Anatomía para colorear. 2ª ed., Barcelona, Elsevier.

–Kemp, M. (2010). Style and non-style in anatomical illustration: From Renaissance Humanism to Henry Gray. Journal of Anatomy, vol. 216, nº 2, pp. 192-208.

–Moreno Egea, A.; De la Torre Sánchez, J.A. (2016). Giulio Cesare Casseri (1552-1616): el Anatomista de Padua ensombrecido por la historia. International Journal of Morphology, vol. 34, nº 4, pp. 1322-1327.

–Netter, F.H. (1962). The CIBA Collection of Medical Illustrations. Vol. 3: Digestive System. Part II: Lower Digestive Tract. New York, CIBA.

–Parent, A. (2019). Berengario da Carpi and the Renaissance of Brain Anatomy. Frontiers in Neuroanatomy; 13, 11. doi: 10.3389/fnana.2019.00011.

–Pearce, J.M.S. (2017). Samuel Thomas Soemmerring (1755-1830): The Naming of Cranial Nerves. European Neurology, vol. 77, pp. 303-306.

­–Roberts, K.B.; Tomlinson, J.D.W. (1992). The Fabric of the Body: European Traditions of Anatomical illustration. Clarendon Press.

–Tsiaras, A. (2009). El Cuerpo humano. La maravilla del cuerpo humano revelada. Barcelona, Editorial Paidotribo.

Historia de la ilustración anatómica I

Hemos insertado en el canal Youtube Medicina, historia y sociedad la segunda parte de La ilustración anatómica. Como es habitual a continuación ofrecemos la transcripción de la primera parte. La bibliografía se incluirá en el siguiente vídeo (La ilustración anatómica II).

[Intro]

A pesar de su importancia, el estudio de la ilustración anatómica, se ha realizado de forma parcial y desde puntos de vista diferentes.  

Un clásico es el libro Geschichte und Bibliographie der anatomischen Abbildung nach ihrer Beziehung auf anatomische Wissenschaft und bildende Kunst (Historia y bibliografía de la ilustración anatómica: en su relación con la ciencia anatómica y las artes visuales), que fue escrito por Choulant en 1857.  

Uno mucho más reciente es el de Roberts y Tomlinson,  The Fabric of the Body: European Traditions of Anatomical illustration, de 1992.

Se trata de un mundo complejo en el que coinciden médicos, artesanos como escultores, pintores, dibujantes, grabadores, imprentas y editores de libros, comerciantes…  

En esta ocasión no me voy a referir al periodo anterior a la aparición de la imprenta ni a las obras que no iban destinadas a las distintas ramas sanitarias.      

[Título]

Algunos autores, como el historiador de la medicina Charles Singer, establecen diferentes etapas en la ilustración anatómica, en las que nos vamos a basar aunque sea sólo en parte.  

La primera, la más larga, que abarcaría desde la Antigüedad hasta los precursores de Vesalio y que, como hemos dicho, no vamos a ver.  

La segunda, por el contrario, sería muy corta (unos veinte años). Comenzaría en 1521 con Berengario da Carpi y terminaría en 1543 con la publicación de la Fabrica.  

Se caracterizó por el uso de xilografías que llegaron a tener gran precisión en la época, sobre todo las realizadas por alemanes e italianos. Entre sus características está la representación preferente de todo el cuerpo en vez de sus partes aisladas, el uso de fondos paisajísticos, un diseño de las figuras que parecen vivas y no cadáveres, etc.    

Berengario, que lo ubicamos siempre en la “anatomía prevesaliana”, se graduó en medicina en Bolonia en 1489 y fue catedrático de cirugía en 1502 donde enseñó durante veinticinco años. Fue de los primeros anatomistas en utilizar ilustraciones basadas en la observación. Anatomistas y artistas (dibujantes y a veces dibujantes y grabadores) comenzaron una larga etapa de relación que perduró siglos.  

Las láminas que vemos pertenecen al Isagogae breves de Berengario de 1525. Se cree que el artista fue Hugo da Carpi (1455-1523).  

La siguiente fase, la tercera, duraría ochenta años. Comenzaría con Vesalio y terminaría en 1627.  

En un vídeo anterior (aquí arriba aparece el enlace) repasábamos la importancia que tuvo la edición de la Fabrica de Vesalio con sus ilustraciones. De alguna manera no sólo comenzó a cambiar los contenidos anatómicos sino que influyó también en la ilustración anatómica basada en la observación directa. Las xilografías que contiene marcaron la pauta de lo que vendría posteriormente durante muchos años.  

Una buena parte de las ilustraciones fueron hechas por Johannes Stephanus de Calcar (ca1499-1546), discípulo del artista veneciano Tiziano. Los grabados se llevaron a Basilea para que los imprimiera Joannis Oporini, un destacado editor que eligió una excelente tipografía y realizó una maquetación impecable, entre otros aciertos. Vesalio supervisó las tareas.

Sus ilustraciones fueron muy copiadas especialmente por reconocimiento de una gran obra pero también por plagio.  

De los posvesalianos mencionaremos la Historia de la composición del cuerpo humano (1556), del castellano Juan Valverde de Amusco, que goza de características propias.  

A diferencia de Vesalio, que publicó su obra en un exquisito latín, Valverde usó la lengua vulgar, en este caso el castellano (después fue traducida al italiano) que acercó la anatomía a sus verdaderos destinatarios, los cirujanos quienes socialmente estaban en un nivel inferior a los médicos y tenían formación artesanal. No nos referimos aquí a los médicos-cirujanos, una excepción que se dio en Italia y España.  

La calidad de sus imágenes es extraordinaria ya que se utilizó la calcografía, es decir, planchas metálicas. El autor fue Gaspar Becerra (1520-1568), artista nacido en Baeza que se formó en Roma con mucha influencia de Miguel Angel.  Nicolás Beatriced o Beatrizius (ca 1507-1570) fue el grabador.  

Esta lámina, la del cuerpo que se despelleja a sí mismo (conócete a ti mismo), tiene sus similitudes con esta otra de la Capilla sixtina. Determinados autores señalan otro periodo importante (el cuarto): el que marcó el grabado y aguafuerte en plancha de cobre entre 1627 y 1730.  

Ejemplos: la Anatomia anatomicæ de Giulio Casseri, que nació en Piacenza en 1552, estudió en Padua y fue ayudante de Acquapendente aunque sus relaciones no fueron siempre buenas.    

Su tercera gran obra Tabulae Anatomicae LXXIIX  visa omnes novae nec ante hac fue  publicada 11 años después de su muerte y fue editada en 16 ocasiones desde 1627.

A finales del siglo XVII se sacrificó en ocasiones la precisión científica por cuestiones artísticas.  Las láminas de la anatomía de Godefridi Bidloo, dibujadas por Gérard de Lairesse, son magníficas obras de arte y, sin embargo, contienen numerosas inexactitudes anatómicas.  Los diseños de Gerard de Lairesse son una desviación total de la tradición idealista inaugurada por las xilografías vesalianas.  

Las figuras se muestran con realismo y sensualidad cotidianos, contrastando las partes crudas y disecadas del cuerpo con las superficies suaves y llenas de carne sin cortar que las rodean. Aparecen figuras atadas y desolladas en ropa de dormir o ropa de cama ordinaria; así como objetos (un libro, un frasco, una mosca…)  

De lactibus (1627) de Gaspare Aselli  (ca 1581-1626)), que no sólo anunció el descubrimiento de los vasos quilíferos, sino que también representa el primer intento de utilizar el color para distinguir diferentes partes del cuerpo, en este caso estos vasos de los vasos sanguíneos y las vísceras, con la ayuda de un xilografía de claroscuro impresa en color. También fue durante este período cuando las espléndidas planchas grabadas de Bartolomeeo Eustachi (ca 1500-1574), que habían estado perdidas durante 162 años, fueron redescubiertas y publicadas por primera vez en 1714 por Giovanni Maria Lancisi a expensas del papa Clemente XI.  

Aquí quiero colocar también el Atlas anatómico de Crisóstomo Martínez. Valenciano de nacimiento, fue coetáneo de Marcelo Malpighi, Lorenzo Bellini y Antony Leeuwenkoek. Aprendió y luego ejerció en Valencia de pintor, grabador y decorador de muebles. Hacia 1680 comenzó a realizar un Atlas para lo que recibió una ayuda que el Ayuntamiento y de los diputados de la Generalitat solicitaron a Carlos II. Realizó parte del mismo en París. Destaca el detalle del estudio textural del tejido óseo. Dedicaremos un vídeo para hablar del mismo.  

El quinto periodo abarcaría de 1730 a 1778 y estaría marcado por la obra de  Bernhard Siegfried Albinus (1697-1770)   Anatomista conocido por sus Tabulae sceleti et musculorum corporis humani, un volumen ilustrado, que se publicó por primera vez en Leiden en 1747.   Contrató a un gran artista, Jan Wandelaar (1690-1759), para ejecutar los dibujos bajo su estrecha supervisión. Las placas resultantes, que combinan una gran precisión científica con logros artísticos, se convirtieron en la nueva norma que eventualmente reemplazó a las imágenes vesalianas que habían sido el pilar de la ilustración anatómica durante más de doscientos años.  

También podemos mencionar las placas preparadas por el pintor y grabador Jan van Rymsdyk (ca 1700/1730-1788/1790) para la Anatomia uteri humani gravidi de William Hunter (1774) (hermano del conocido cirujano John Hunter) y para los atlas anatómicos de otros autores.   

El papel vital del artista, más que el del anatomista solo, comienza a ser reconocido cada vez más, y los nombres del artista e incluso de los grabadores a veces ocupan un lugar destacado bien en las portadas bien en la parte dedicada a las cuestiones preliminares.  

El gran potencial del color en la metodología de la ilustración no se realizó plenamente hasta un período posterior.  

Aquí tenemos Ilustración de vísceras humanas de Paulo Mascagni (1755-1815) ‘tórax explotado’, prosector de Anatomía en la Universidad de Siena, lo que significaba que era responsable de dirigir la disección para la demostración y la investigación.   Su Anatomia Universa (1823-1832) fue una obra completa de anatomía con cuarenta y cuatro láminas coloreadas a mano posiblemente por Antonio Serrantoni.    

El último periodo fue el que marcó  De basi encephali  de Soemmering  de 1778 hasta mediados del siglo XIX.   Una característica de esta fase es un mayor cambio hacia la anatomía de los órganos internos, a la luz de los nuevos descubrimientos realizados como resultado de un estudio más especializado.   La mecanización de la imprenta en el siglo XIX, junto con la invención y el desarrollo de la litografía, hizo que los textos y las ilustraciones pudieran producirse en masa y distribuirse ampliamente a través de redes de editores y libreros.  

Con la introducción de la cromolitografía en la década de 1830, la ilustración anatómica alcanzó quizás su nivel más alto en el atlas de ocho volúmenes de Bourgery.   

Bourgery empezó a trabajar en su magnífico atlas en 1830 en colaboración con el ilustrador Nicolas Henri Jacob (1782-1871), un alumno del pintor francés Jacques Louis David. Los primeros volúmenes se publicaron al año siguiente, pero completar el tratado requirió cerca de dos décadas de esfuerzos; Bourgery consiguió completar en vida su magna tarea, pero el último de los ocho volúmenes del tratado no se publicó en su totalidad hasta cinco años después de la muerte de su autor. Los ocho volúmenes del tratado de Bourgery cubren la anatomía descriptiva, anatomía topográfica y técnicas quirúrgicas (con descripciones detalladas de casi todas las principales intervenciones que se realizaron durante la primera mitad del siglo xix), anatomía general, embriología y anatomía microscópica.   Las espectaculares litografías coloreadas a mano y de tamaño natural son extraordinarias por su claridad, color y atractivo estético, ya que reflejan una combinación de observación directa en laboratorio e investigación ilustrativa.  

Medir la presión arterial. Historia (II)

Hemos añadido un nuevo vídeo en el canal Medicina, historia y sociedad. Así, pues, incluimos el guión del anterior, segunda parte de la historia de la medida de la presión arterial.

Después del aparato de Riva-Rocci, que vimos en el vídeo anterior, siguieron perfeccionándose este tipo de aparatos.

Por un lado mejoró el brazalete y el manguito compresor, así como el indicador de las variaciones de la pulsación arterial en el curso de las compresiones y descompresiones.

Respecto al manómetro, las preferencias se inclinaron por los metálicos mas que por los de mercurio (fácil transporte).

Respecto a los manguitos se idearon los de bolsa doble pero dispuestos como si fueran de bolsa única.

Hoy se clasifican los esfigmomanómetros de la siguiente manera:

  1. Por el metodo de insuflación del manguito: en manuales y automáticos.
  2. Por el metodo en que se visualiza el resultado: en una columna de mercurio, aneroide o análogo en una escala con aguja; y, finalmente, digital, en pantalla.
  3. Por el método de determinación de la presión sistólica y diastólica: en auscultatorio (uso de los sonidos de Korotkov) y oscilométrico.

Vamos a ver algunos de éstos:

Método oscilométrico

Oscilómetro de Pachon

Creado por Michel Victor Pachon (1867-1938) en 1909 junto con un ingeniero de la Compañía de Caminos de Hierro de París. Fabricado por la empresa Boulitte.

Las oscilaciones de presión en la arteria debajo del manguito se transfieren a un aneroide en la carcasa hermética del oscilómetro metálico. Tiene dos escalas: una para leer la amplitud de las oscilaciones (de 0 a 20) y la otra para determinar la presión arterial (de 0 a 30 cm de Hg).

Se registran primero las oscilaciones de baja amplitud, luego oscilaciones crecientes cuyo inicio corresponde a la tensión máxima, y ​​finalmente oscilaciones decrecientes cuyo inicio refleja la presión mínima o diastólica. No requiere fonendoscopio.

El brazalete empleado con este oscilómetro fue diseñado por el cardiólogo francés Louis Gallavardin (1875-1957). El manguito de presión arterial incorpora dos vejigas de goma que se inflan de forma independiente, una superpuesta a la otra.

Oscilometro de Von Recklinhausen

Recoge directamente las oscilaciones de las paredes arteriales en el mismo lugar de la compresión. La parte neumática está conectada con una pera que se utiliza para inflar el manguito y con un oscilómetro que registra de forma continua la presión.

Se abre ligeramente la válvula y al descomprimirse el manguito en el momento de aparecer las primeras oscilaciones evidentes se lee la presión sistólica. Siguen las oscilaciones crecientes y al presentarse la primera oscilación decreciente se lee la presión arterial diastólica. Para finalizar se abre completamente la válvula de la pera de goma y se desinfla el manguito

Método palpatorio

Sólo nos proporciona la tensión sistólica. Se utiliza un esfigmomanómetro. Se infla el brazalete 10 o 20 mm de Hg más que la presión sistólica estimada al desaparecer las pulsaciones de la arteria radial del canal del pulso. Después se va desinflando poco a poco el brazalete o manguito hasta que aparece el pulso radial. El valor que se lee en ese momento a través del manómetro es el correspondiente a la presión arterial sistólica.

Método auscultatorio

El esfigmotensiófono de Boulitte constan de brazalete con su manómetro y un fonendoscopio que se aplica bajo el manguito para auscultar la arteria más próxima inmediatamente por debajo del manguito; la humeral en el pliegue del codo si se coloca el brazalete en el brazo; la braquial si se utiliza el manguito antibraquial.

Con el fonendoscopio sobre la arteria braquial debajo del manguito, se insufla aire hasta el nivel máximo.  Luego se abre la pera de insuflación de forma que el mercurio descienda a razón de 2 mm por segundo. Hay que fijarse en la escala cuando se producen los sonidos de Kortokov (fase 1 a la 5). La fase 1 corresponde a la presión sistólica y la fase 5 a la diastólica.

Fase 1: aparace el sonido al desinflar el manguito

Fase 2: el ruido pierde intensidad, se escucha un soplo

Fase 3: un ruido sordo más suave

Fase 4: el sonido se va apagando progresivamente

Fase 5: se deja de escuchar el sonido

El método oscilatorio solía dar 10 mm de más y los palpatorios de 5 a 10 mm de menos.

Esfigmógrafos automáticos

Los esfigmomanómetro automáticos (denominados también digitales) pueden ser de brazalete aplicable a la muñeca, al brazo o incluso a un dedo. Cuanto más distal es el punto de medida de la tensión arterial, mayor es la influencia de la vasoconstricción periférica sobre los resultados de la medición. El funcionamiento básico de este dispositivo es similar: posee su brazalete y su manómetro; a veces incorpora un compresor eléctrico para inflar el brazalete. Contienen también una pequeña computadora que dispone de memoria y reloj. El brazalete dispone además en su interior de sensores capaces de detectar los sonidos de Korotkoff, permitiendo conocer el intervalo de presión diastólica y sistólica. 

Generalmente, este tipo de aparatos contiene un sistema auscultatorio y otro oscilométrico. El sistema auscultatorio se fundamenta en un micrófono ubicado en el brazalete y que interpreta los ruidos de Korotkoff, mientras que los dispositivos oscilométricos analizan la transmisión de vibración de la pared arterial. No requieren de un estetoscopio adicional.

Hay otras formas de medir la tensión arterial como, por ejemplo, ultrasonidos, métodos de los que no nos ocupamos por ser más raros.

Como siempre, si te ha gustado el vídeo dale un like y suscríbete gratuitamente al canal.

¡Hasta pronto!

La medida de la presión arterial. Historia (I)

Insertamos el guión del vídeo La medida de la presión arterial. Historia (I) que se subió al canal Medicina, historia y sociedad hace tres semanas.

Se suele decir que la medición real de la presión arterial procede del siglo XVIII con los experimentos de Stephen Hales (1677-1761).

Para Johannes Müller, destacado fisiólogo alemán, el descubrimiento de la presión arterial fue más importante, incluso, que el de la circulación.

Veamos una síntesis de esta historia.

INTRO

Hales nació en Bekesbourne, Kent, el 7 de septiembre de 1677. En 1696 ingresó en la Universidad de Cambridge. Allí se interesó por la historia natural y por la astronomía. Fue elegido miembro de la Royal Society en 1718.

Fue capaz de insertar un tubo en una arteria de una yegua y observó que la sangre subía o bajaba con las pulsaciones del corazón. Describió la importancia del volumen sanguíneo en la regulación de la presión arterial. Acuñó el concepto de presión arterial y demostró la capacidad de bombeo del músculo cardíaco. Fueron las primeras mediciones que se hicieron. Sin embargo, se requería un tubo de más de dos metros de longitud y evitar que la sangre se coagulara pronto.            

Un siglo después, en 1828, Jean Léonard Marie Poiseuille (1797-1869) introdujo un manómetro de mercurio. Nació en 1797. Obtuvo la licenciatura en 1828. Igual que Magendie y Claude Bernard, se dedicó a la investigación sin hacer clínica y tener contacto con enfermos. En 1828 leyó su tesis sobre el uso del manómetro de mercurio para medir la presión arterial, con lo que ganó la Medalla de oro de la Real Academia de Medicina. El manómetro iba conectado a una cánula llena de carbonato potásico que actuaba como anticoagulante que se insertaba en una arteria del animal. Llegó a insertar cánulas en vasos de 2mm demostrando que en estas arterias tan pequeñas se mantenía la presión.

Estos hallazgos permitieron al fisiólogo Karl Ludwig idear el quimógrafo, del que ya hemos hablado en otro vídeo. Con el mismo creó la recogida de datos fisiológicos mediante gráficas.

Usó la cánula y el manómetro. Introdujo un sistema para que una punta fuera dibujando una gráfica en un tambor giratorio. A partir de ahí se diseñaron instrumentos similares que registraban otros parámetros fisiológicos.

En otro vídeo vimos cómo Vierordt con su esfigmógrafo medía la contrapresión que era necesaria para hacer que cesara la pulsación en una arteria. Etienne Jules Marey mejoró considerablemente el esfigmógrafo de Vierordt en 1860 y mejoró la precisión para establecer la presión arterial en los pacientes. Sin embargo, para que midiera la presión arterial había que complicar el aparato tanto que no fue útil. Eso sí, quedó para registrar las pulsaciones.

Pierre Charles Édouard Potain (1825-1901) señaló que, al medir la presión, había que tener en cuenta también la resistencia de la pared arterial.

La primera estimación precisa de la presión arterial en las personas fue realizada por el cirujano J. Faivre, en 1856. Durante la realización de una amputación de miembro inferior conectó un tubo de manómetro en forma de U con una cánula de latón, directamente a la arteria del paciente. Pudo obtener lecturas directas. Encontró que la presión arterial de la arteria femoral era de 120 mm Hg y la presión de la arteria braquial entre 115 y 120 mm Hg. Estas y otras lecturas directas fueron de gran valor para establecer un rango normal de presión arterial. Sin embargo, este método era obviamente impracticable para las mediciones de rutina.

Fue Samuel Siegfried Karl Ritter von Basch (1837-1905) quien finalmente prescindió de la punción arterial y del registro directo de la presión arterial.

Von Basch nació en Praga en 1837 y se graduó en Viena en 1862. El método de Von Basch utilizaba una bolsa de goma inflable que se llenaba de agua. Los bordes de la bolsa estaban apretados alrededor del cuello del bulbo manométrico que estaba lleno de mercurio. Una columna hueca subía desde el bulbo, de modo que cualquier presión creada en la bolsa de agua se transmitiría al bulbo, el mercurio subía por el tubo y, por lo tanto, se podría registrar la presión.

Usó un manguito estrecho de solo 5 cm de ancho. Esto provocó que se formara un ángulo agudo entre los bordes superior e inferior del manguito y la piel, lo que provocó que se acumularan áreas locales de alta presión y que la lectura no fuera exacta. Este error fue detectado y corregido por von Recklinghausen en 1901, quien reemplazó la anilla estrecha por una de unos 12 cm de ancho.

Algunos médicos aceptaron la introducción del esfigmomanómetro en la medicina clínica como una valiosa ayuda para el diagnóstico, pero otros sostuvieron la opinión de que al usar el esfigmomanómetro “empobrecemos nuestros sentidos y debilitamos la agudeza clínica”. A pesar de estas acusaciones, Potain hizo su segunda contribución para hacer que el medidor de esfigmomanómetro fuera más apto para uso clínico cuando, en 1889, reemplazó el agua por aire para la compresión. El dispositivo de Potain consistió en un braalete que se utilizó para la compresión de la arteria. Este se inflaba por medio de una segunda perilla y la presión se registraba con un manómetro aneroide portátil.

Con el esfigmomanómetro de Ritter se obtenía bien la presión sistólica, pero no la diastólica. Los médicos comenzaron a utilizar el método oscilatorio. Esto implicó observar las oscilaciones que se transmitían al mercurio en el manómetro desde la arteria, ya que cuando la presión del manguito era igual a la presión arterial, la arteria comprimida latía, provocando así pequeñas fluctuaciones regulares en la presión del manguito. La aparición de oscilaciones claras definió la presión sistólica y la transición de oscilaciones grandes a pequeñas, la presión diastólica.

En Inglaterra, Hill y Barnard inventaron un dispositivo que tenía un manómetro de aguja que era lo suficientemente sensible para registrar la fase diastólica. Su aparato era portátil y fácil de usar. El esfigmomanómetro de Hill y Barnard se ideó en la década de 1890 Sir Leonard Hill (1866-1952), un fisiólogo británico, y Harold Barnard (1868-1908), un cirujano británico. Contribuyó mucho a mejorar la medición de la presión arterial

Scipione Riva-Rocci (1863-1937) publicó ” Un nuevo esfigmomanómetro “, el 15 de diciembre de 1896, y el segundo, “La técnica esfigmomanométrica“, En 1897 en la Gazzetta Medica de Torino. Utilizó una bolsa de goma inflable guardada en una pulsera de material no expandible. Se comprimía toda la circunferencia del brazo mientras se inflaba la bolsa de goma con aire a través de una pera de goma conectada a ella. La presión dentro del brazalete se registraba a través de un manómetro de mercurio. Palpando el pulso, Riva Rocci podía conocer la tensión arterial sistólica al notar la desaparición del mismo cuando inflaba el brazalete, o su reaparición cuando lo desinflaba. La banda inicial era muy angosta: medía solo 5 cm. Heinrich von Recklinghausen hijo del conocido Friedrich Daniel von Recklinhausen, solucionó este problema llevando el ancho del brazalete a 12 cm. Riva-Rocci dirigió el Hospital de Varese y dio clases en la Universidad de Pavía. Murió por una encefalitis letárgica.

Otros atribuyen la lectura de la presión diastólica al ruso Nikolai Korotkov. Nació en 1874 y se graduó de médico en Moscú en 1898. Estuvo de cirujano en diversas guerras y acompañó al ejército ruso a Siberia, Japón y Singapur. Ejerció en la Academia Militar de San Petersburgo como cirujano asistente. Su centro de interés fue la cirugía vascular. Medir la presión como forma de definir la magnitud del daño vascular era entonces una necesidad obvia. Al empleo del esfigmomanómetro Korotkov sumó la colocación de un estetoscopio para niños sobre la arteria braquial, debajo del brazalete. Cuando el mismo se inflaba por encima de la presión arterial máxima la circulación en la arteria braquial se detenía. Al desinflar lentamente el brazalete, se podía auscultar en un momento determinado un ruido: la sangre volvía a circular y ese primer tono correspondía a la presión sistólica. Se escuchaban mientras se seguía desinflando el brazalete murmullos y luego ruidos coincidentes con los latidos, hasta que todo sonido desaparecía. El último ruido escuchado correspondía como sabemos con el momento en que la sangre circulaba libremente por la arteria, porque la presión en el interior del vaso había superado la ejercida por la banda, y la medición señalaba la presión arterial diastólica. Presentó su hallazgo ante la Academia Militar de San Petersburgo en un informe de una sola página en 1905. Murió muy joven, a los 46 años, de tuberculosis.

Su técnica ha resistido la prueba del tiempo, ya que se ha utilizado durante más de medio siglo sin prácticamente ningún cambio.

William Harvey y la circulación de la sangre

Como se ha subido un nuevo vídeo al canal de Youtube Medicina, historia y sociedad, y como es habitual, presentamos la transcripción del vídeo anterior dedicado a William Harvey y la circulación de la sangre.

Tan importante fue el descubrimiento de la circulación de la sangre que varios países se la quisieron atribuir en el pasado.

Andrea Cesalpino fue el único, siguiendo a Aristóteles, que dijo contra Galeno que el centro de las arterias, las venas y el corazón era el corazón y no el hígado. También señaló que la sangre va de las venas al corazón y de aquí a las arterias. Sin embargo, no llegó al descubrimiento de la circulación sanguínea.

La fisiología moderna comienza –podríamos asegurar– con el redescubrimiento de la circulación menor de la sangre, con algunos estudios de Servet, Realdo Colombo, Valverde de Amusco, Fabrizi d’Acquapendente y de Santorio. Tras estos se sitúa la figura de Harvey.

INTRO

Harvey nació en 1578 en Folkstone. Obtuvo el grado de bachiller en artes en el Caius College de Cambridge. Su fundador había sido compañero de Vesalio en Padua. Quizás fue por esto por lo que Harvey marchó allí para estudiar medicina en 1598. Terminó en 1602. Fue discípulo de Aquapendente, Casserio y Eustaquio Rudio.

Ese año regresó a Inglaterra. Revalidó en Cambridge su título de doctor, se inscribió en el Royal College of Physicians y en 1609 fue nombrado médico del Hospital de San Bartolomé (Londres).

En 1615 consiguió que el College of Physicians le encargara un curso de anatomía. Las notas de esa época demuestran, según los especialistas, de que ya intuía la circulación de la sangre, aunque no fue hasta 1628 que publicaría la noticia y cómo llegó hasta ella.

El libro fue impreso en Francfort con el título Exercitatio anatómica de motu cordis et sanguinis in animalibus. Lo dedicó a Carlos I. Éste le nombró médico de cámara en 1632. En 1631 vino a España con el duque de Lennox, acompañó a Carlos I con sus hijos a Edimburgo (1633) y estuvo con el duque de Arundel en Viena mientras este fue embajador (1636).

Durante la guerra civil siguió a Carlos I con sus hijos a Oxford, donde permaneció durante 4 años. Fue master del Merton College y compuso sus dos Exercitationes ad Riolanum.

Carlos I se entregó a los escoceses y Harvey volvió a Londres. Allí siguió investigando hasta publicar sus Exercitationes de generatione animalium en 1651.

Murio el 3 de junio de 1657 en Roehammton, Londres.

La circulación de la sangre

El librito, de 72 páginas. En el capíulo 8 dice:

“Hasta tal punto es nuevo e inaudito lo que voy a decir, que no solo temo el mal que me pueda venir de la envidia de algunos, sino hasta granjearme la hostilidad de todos los hombres”. Proclama la circulación de la sangre: ésta es impulsada por el ventrículo izquierdo a la aorta y regresa a la aurícula derecha a través de las cavas.

Para ello demuestra 3 tesis:

  1. La cantidad de sangre que pasa de la vena cava al corazón y las arterias es muy superior a la que podría formarse por la transformación del alimento ingerido. Recordemos que en el esquema de Galeno el alimento se transformaba en quilo, el quilo en sangre en el hígado, de ahí al corazón y de este a todo el cuerpo convirtiéndose en sustancia propia de cada parte.
  2. En los miembros la sangre afluye por las arterias y refluye por la venas en cantidad muy superior a la necesaria para su nutrición
  3. La sangre regresa al corazón por las venas y solo por ellas

La primera la demuestra mediante el cálculo. El ventrículo izquierdo tiene una capacidad de 47 grs. Cada contración expulsa a la aorta la sexta parte, es decir, unos 7 grs. El corazón late 2.000 veces por cada media hora. Por tanto, del corazón salen 12 kilos de sangre, cantidad muy superior a la que pueda haberse formado en el hígado a partir de los alimentos ingeridos, según esquema de Galeno.

La segunda tesis la comprobó observando lo que sucedía en el brazo cuando se le oprimía con ligaduras. Por un lado estában las fuertes, que impedían el paso de sangre por las arterias y se eliminaba el pulso a partir de la ligadura. Por otro las medianas, que bloqueaban el paso de sangre por las venas periféricas pero sí permitían captar el pulso.

Si se practica la ligadura fuerte en el brazo de un sujeto con venas muy marcadas, el pulso radial no se percibe. El axilar será más violento que de ordinario y la mano quedará fría.

Si se afloja la ligadura a media presión, se hinchan las venas del antebrazo y flexura del codo, vuelve a sentirse el pulso radial y la mano enrojece y se calienta. Si se afloja del todo la ligadura, desaparece la hinchazón venosa y el sujeto experimenta frío en la axila.

Por tanto, la sangre acude por las arterias y refluye por las venas.

La anatomía y función de las válvulas venosas patentizan la tercera tesis de Harvey. Su maestro Aquapendente dijo que las válvulas venosas eran compuertas que regulaban la progresión del líquido hemático desde el corazón. Sin embargo, una ligadura mediana en el brazo hace ver en las venas ingurgitadas pequeños abultamientos correspondientes a los conjuntos valvulares. Comprimiendo con el dedo una vena entre dos nódulos, se observa que la sangre no puede pasar más allá del nódulo cuando el dedo se mueve en sentido distal, mientras que lo hace con facilidad si el dedo se desliza en sentido proximal.

Todo esto no supuso la aceptación de sus teorías. Un experimento moderno, resolutivo en el sentido de Galileo y dos pruebas experimentales en absoluto concluyentes respecto de la verdad de esa hipótesis. Se le enfrentaron buena parte de los anatomistas. Sólo los seguidores de sus cursos en el Royal College le apoyaron.

MATÍAS GARCÍA

Quiero poner un ejemplo de los que le criticaron. Se trata del catedrático de anatomía de Valencia que nació en Agreda (Soria) en 1640 y murió en Valencia en 1691. Puede considerarse como la cabeza del galenismo más reaccionario. Trató de refutar las ideas de Harvey repitiendo sus experimentos. Es decir, no lo hizo de forma especulativa sino que recurrió al razonamiento de su gran práctica en la disección. Los principales ataques a la doctrina de William Harvey los expone en De motu cordis. De motu arteriarum. De motu sanguinis, un tratado sobre el movimiento de la sangre, el corazón y las arterias, incluido en sus Disputationes Medicinae Selectae (1677). Tres años más tarde, Matías García escribió Disputationes Physiologicae (1680), obra en la que expone las doctrinas sobre los temperamentos, humores y facultades, de acuerdo con el galenismo ortodoxo y en la que aprovecha de nuevo para criticar la doctrina de Harvey.

Harvey supo ver actividad en la contracción de la víscera y reposo en su dilatación. Con los años fue cambiando su pensamiento acerca del calor del corazón.

Aunque no nos ocuparemos de los aspectos en los que Harvey continuó mirando al pasado, siguió conectado con los conocimientos clásicos.

Para Harvey lo que el Sol es en el macrocosmos respecto a la Tierra, eso mismo sería el corazón en el microcosmos respecto de las partes periféricas.

Metodológicamente hablando, Harvey recurrió a:

  1. Observación sensorial o atenimiento del observador a lo que por sí mismo contempla.
  2. Inducción o la actividad mental de llegar, mediante observaciones repetidas y reflexión atenta a la verdad general que da razón suficiente de todas ellas.
  3. El experimento: entendido como un recurso técnico para que la naturaleza ostente la verdad a que frente a ella ha llegado la mente del investigador.

Obras de William Harvey

Exercitatio anatomica de motu cordis et sanguinis in animalibus… Guilielmi Harvei,… Francofurti: sumptibus G. Fitzeri, 1628

Exercitationes duae anatomicae de circulatione sanguinis ad Jo. Riolanum filium,… authore Gulielmo Harveo,..Roterodami: ex officina A. Leers, 1649

Exercitationes de generatione animalium, quibus accedunt quaedam de partu, de membranis ac humoribus uteri et de conceptione, autore Guilielmo Harveo,… Amstelodami : apud J. Janssonium, 1651.

Bibliografía

Bolli, R. (2019). William Harvey and the Discovery of the Circulation of the Blood. Part I. Circulation Research, vol. 124, nº 8, pp. 1169-1171.

Bolli, R. (2019). William Harvey and the Discovery of the Circulation of the Blood. Part II. Circulation Research, vol. 124, nº 9, pp. 1300-1302.

Borghi, L. (2018). Breve historia de la medicina. Madrid, Rialp.

Duffin, J. (2018). Una historia de la medicina escandalosamente breve. Tenerife, Ed. Melusina.

Fresquet Febrer, J.L. (2008). Mathias Garcia (1640-1691). En Epónimos y biografías médicas. Consultado el 1 de marzo de 2021 en https://www.historiadelamedicina.org/garcia.html

Laín Entralgo, P. (1973). La obra de William Harvey y sus consecuencias. En: Laín P. (dir.). Historia Universal de la Medicina. Barcelona, Salvat, vol. 4, pp. 235-249.

López Piñero, J.M. (2010). Historia de la Medicina universal. Valencia, Ajuntament de València.

Yount, L. (2008). Great minds of science. William Harvey. Discoverer of how blood circulates. Revised Ed. Enslow Publishers

El síntoma como la figura de un trazado gráfico fijo y mensurable

Como es habitual, presentado un nuevo vídeo en el Canal Medicina, historia y sociedad, insertamos aquí la transcripción del anterior; en este caso “El síntoma como la figura de un trazado gráfico fijo y mensurable”

Guión

En los dos vídeos anteriores hemos conocido que el cuadro sintomático es la expresión del desorden procesal que puede estudiarse desde la física o de la química. Hemos visto la consideración del síntoma como un proceso energético y como un proceso material.

A los médicos, a los que llamamos fisiopatólogos, también les resultó significativa la reducción del síntoma a la figura de un trazado fijo y mensurable.

[INTRO]
En primer lugar. El caso de los síntomas cuya expresión principal es un movimiento mecánico.
La invención del kimógrafo por parte de Carl Ludwig en 1847 fue un modelo de inspiración.
El kimógrafo es un dispositivo que dibuja una representación gráfica de la posición espacial a lo largo del tiempo. Consta de un tambor giratorio mecanizado envuelto con una hoja de papel, sobre la cual se mueve un lápiz o una punta entintada que registra los cambios en fenómenos como la presión arterial, el movimiento muscular, la actividad nerviosa y la respiración. El kimógrafo puede registrar, y luego se puede cuantificar y estudiar los cambios temporales en los fenómenos fisiológicos y la interacción entre ellos.

Uno de los primeros usos que tuvo fue la medición de la presión sanguínea. Su funcionamiento no era del todo perfecto pero de él nacieron los esfigmógrafos de Vierordt (1818-1884) y el de E.J. Marey (1855 y 1860 respectivamente).

Karl von Vierordt estudió en Berlín, Göttingen, Viena y Heildelberg. En 1849 fue nombrado profesor de Tubinga. Desarrolló técnicas y dispositivos para monitorizar el sistema circulatorio. Uno de sus trabajos más conocidos fue un tratado sobre al pulso y la presión arterial Die Lehre vom Arterienpuls im gesunden und kranken Zustände (1855). También publicó un Grundriss der Physiologie des Menschen (1871), un esquema o de la fisiología humana.

Otro de los más destacados es el de Marey. Este médico nació en Beaune (Francia) en 1830 y falleció en París en 1904. Se graduó en 1859 y montó un pequeño laboratorio en París donde estudió la circulación de la sangre. Autor de Du mouvement dans les fonctions de la vie (1868). En 1863 realizó mejoras en el esfigmógrafo que monitorizaba el movimiento del sistema circulatorio (especialmente el pulso) haciendo que fuera transportable.

La esfigmografía objetiva las ondas pulsátiles en forma de curvas características que se desarrollan en el tiempo y cuyos detalles nos informan acerca de la frecuencia y forma del pulso, así como del trabajo cardíaco tanto auricular como ventricular.

Presentamos aquí un modelo inspirado en el de Marey que se denomina Philadelphien.

Wundt, W. en su  Traité élémentaire de Physique médicale y diferentes autores en otros textos, presentan varios esfigmógrafos: aparte del de Marey, el de Longuet, el de Brondel, el de Béhier, etc.

Y aquí tenemos algunos trazados obtenidos con los esfigmógrafos.

Otro ejemplo es la flebografía con la que se obtenía el flebograma. Con el mismo se obtenían datos acerca de del funcionamiento del corazón derecho y del miocardio. Sobre el flebograma también se dejaba sentir el funcionamiento del corazón izquierdo, circulación capilar, circulación venosa periférica incluso la pulmonar, la respiración, y el funcionamiento de la válvula tricúspide. Ahora no tiene este significado pues se utilizan procedimientos radiográficos.

También se puede hablar de fonocardiografía o registro gráfico de los ruidos del corazón para objetivar los datos de auscultación en forma de cardiofonogramas. Más completo era combinar cardiograma con fonocardiograma. El método eléctrico de Einthoven, por ejemplo funcionaría así:

[Se explica el funcionamiento en un esquema]

Desde finales del siglo XVIII, Galvani y después Volta, estudiaron la presencia y el efecto de la electricidad en los seres vivos. El primero diseñó en 1820 un galvanómetro para medir la corriente eléctrica. En 1843 el fisiólogo Bois-Reymond detectó un pequeño potencial eléctrico o diferencia de voltaje en músculos animales en reposo que cambiaba cuando estos se contraían. En 1856 estudiaron los potenciales eléctricos del corazón. El fisiólogo August Waller publicó un trabajo en el que demostraba los cambios electromotores que acompañan al latido cardíaco en la persona. Usaba cables conectados a manos y pies en vez de en el corazón. William Baylis y Ernest Starling mejoraron la técnica y asociaron los cambios eléctricos a fases de la contracción y relajación cardíacas. Einthoven estuvo en una de las demostraciones de Waller en 1889. En 1893 acuñó el término “Electrocardiograma” y comenzó a construir aparatos y métodos de registro y análisis del ECG.

Einthoven convirtió el ECG en realidad combinando varias innovaciones. En 1895 utilizó un galvanómetro mejorado que le permitió identificar 5 picos: P Q R S T. En 1901 inventó un galvanómetro de cuerda que tenía un delgado cable de cuarzo cubierto de plata colocado entre dos electroimanes potentes Modificar las corrientes del cable provocaba movimientos que podían verse cuando un microscopio de transmisión los proyectaba sobre una cinta de papel fotográfico de registro continuo. En 1906 publicó la primera serie de ECGs normales y caracaterísticos de diez enfermedades. En 1924 recibió el Nobel y murió en 1927.

Con esta selección de instrumentos hemos visto la reducción de los síntomas a trazados fijos y mensurables Con el estudio de los mismos como procesos energéticos y como procesos materiales, completamos las principales características de la enfermedad desde la perspectiva fisiopatológica.

Bibliografía
Marey, E.J. (1868). Du mouvement dans les fonctions de la vie. Paris, Germer Baillière.

Rivera-Ruiz, M; Cajavilca, C; Varon, J (2008). Einthoven’s string galvanometer: the first electrocardiograph. Tex Heart Inst J. vol. 35, nº 2, pp. 174–178.

Roguin, A. (2005). Scipione Riva‐Rocci and the men behind the mercury sphygmomanometer. The International Journal of Clinical Practice, vol. 60, nº 1, pp. 73-79.

Wundt, W.M.; Imbert, A.; Monoyer, F. (1884). Traité élémentaire de Physique médicale.  Paris, Baillière.

Vierordt, K. (1855). Die Lehre vom Arterienpuls im gesunden und kranken Zustände. Braunschweig, Druck und Verlag von Friedrich Vieweg und Sohn, 1855

Vierordt, K. Die Pulskurven des Hämodynamometers und des Sphygmographen. Arch f physiol Heilk, 1857, Bd 1, pp. 552.

Vierordt, K. (1863). Die Anforderungen an den Sphymographen. Arch d Heilk, vol. 4, p. 513

Vierordt, K. (1871). Grundriss der Physiologie des Menschen. Tübingen, Verlag der H. Laupp’schen Buchhandlung.

El estudio de las disfunciones como procesos materiales

Como hemos subido un nuevo vídeo al canal de Youtube “Medicina, historia y sociedad“, vamos a insertar aquí en el blog la transcripción del guión del anterior: El estudio de las disfunciones como procesos materiales:

En el vídeo anterior decíamos que dos eran las posibilidades de estudio de las alteraciones funcionales en la enfermedad: investigar las alteraciones como procesos energéticos, estudiables por la física, y como procesos materiales, estudiables por la química. Vimos las primeras con el ejemplo de Wunderlich y la termometría clínica. En otro vídeo abordaremos otros ejemplos.

Hoy vamos a ver la segunda posibilidad, es decir, el estudio de las disfunciones como procesos materiales, estudiables desde la química. Se suele ejemplificar siempre con la obra de Friedrich T. von Frerich (1819-18885).

Nacido en Aurich (Alemania) fue profesor en varias universidades como Kiel, Breslau y Berlín. En 1859 sucedió a Johann Lukas Schönlein como jefe médico de la Charité de Berlín hasta que murió. Dedicó mucho tiempo al estudio de la química fisiológica y aplicó sus conocimientos y técnicas a la investigación de las enfermedades renales y hepáticas así como la diabetes.

Descubrió, por ejemplo, que la atrofia amarilla de hígado, en la que se produce una destrucción masiva de células hepáticas, es una alteración del metabolismo de las proteínas que acaba por hundirse totalmente conduciendo a la muerte del enfermo. A causa de esto, en la orina del paciente aparecen sustancias de desecho como la tirosina y la leucina. Esto se convirtió en signo fisiopatológico, una señal objetiva del trastorno de un proceso orgánico. Es decir, si en la orina de una persona hallamos estas sustancias nos hace sospechar que padece…

También fueron importantes los estudios de Felix Hoppe-Seyler sobre la hemoglobina, que posibilitaron también la introducción de sus alteraciones como signos fisiopatológicos. Este campo se aborda en su Handbuch der physiologisch- und pathologisch-chemische Analyse (Tratado de análisis fisiológico y patológico (1858-1883). Nació en Freyburg en 1825. Fue profesor en Greifswald, Tubinga y Estrasburgo. Murió en Wasserburg en 1895.

A continuación se muestra el Albuminómetro de Esbach, instrumento ideado por Georges Hubert Esbach en 1874 y modificado en 1880. Consiste en precipitar la albúmina con ácido pícrico y cítrico. Se llena el tubo de orina hasta la marca U y el reactivo hasta la marca R. Se tapa y se invierte 12 veces. Se deja reposar 24 horas, después de las cuales se mide la altura del coágulo en la escala grabada en el tubo. Equivale al número de gramaos de albúmina por litro. La presencia de albúmina en la orina nos puede estar indicando un mal funcionamiento del riñón.

En España se popularizó el Manual de análisis químico aplicado a las ciencias médicas del farmacéutico Juan Ramón Gómez Pamo.

Las bases de la colorimetría datan del siglo XVIII y en ella intervinieron varios científicos. Sus hallazgos fueron de gran importancia para los estudios fisiológicos y fisiopatológicos. Se trata de determinar la concentración de una sustancia disuelta al comparar el color de la disolución con un patrón.

El colorímetro de Jules Dubosq (1854), gracias a su sencillez, se incorporó a la clínica a finales del XIX. William Richard Gowers ideo uno formado por dos tubos de cristal, uno de los cuales se había graduado. El primero se dedicaba a poner el líquido de referencia y el otro al líquido problema. Cuando las dos soluciones eran iguales se miraba la marca correspondiente y el tubo graduado del 0 al 140% , dando el porcentaje de hemoglobina. Haldane mejoró el aparato debido a que daba muchos errores.

Suprimido en la grabación: [Otro que incluso sigue utilizandose hoy en países en vías de desarrollo es el que ideó el suizo Hermann Sahli (Berna, 1856 – 1933). Es parecido al de Gowers pero utiliza una solución de ácido clorhídrico al 1% para acercarse  o aproximarse al color del tubo de referencia. De fácil manejo y fiable con el que se consigue una gran reproducibilidad de las muestras.

En el tubo problema, a una solución de ácido clorhídrico hasta la señal 10 se vertían 20 mm cúbicos de sangre obtenida por punción digital. Después se añadían pequeñas cantidades de agua destilada hasta conseguir igualar el color del contenido del tubo con el testigo. Más tarde, como la intensidad del color del tubo testigo variaba por la acción de la luz y del tiempo, la solución fue sustituida por una referencia sólida basada en un cristal de composición y color inalterables.

Sahli también utilizó un hemocitómetro para contar las plaquetas que se conoce con el nombre de Hayem-Sahli]

Para el conteo de células (eritrocitos, leucoctos y plaquetas se utilizaron varios instrumentos. Uno de ellos fue la cámara de Bauer. Ideado por Carl Theodor Neubauer (1830-1879), que ahora veremos que incorpora este equipo, el Aparato de Bürker para el recuento de los glóbulos rojos y blancos de la sangre. Este hemocitómetro fue ideado por Karl Bürker (1872-1957) que simplificó el sistema de conteo y precisión entre finales del siglo XIX y principios del XX. Este tipo de instrumentos facilitó el nacimiento de la hematología.

Recordemos que el hemocitómetro sirve especialmente para el recuento de células en un medio líquido, que puede ser un cultivo celular, sangre, orina, líquido cefalorraquídeo, líquido sinovial, etc.

El conocido como Citron-Kanitz, de origen checo, sirvió para medir la cantidad de glucosa en sangre, en orina así como la hemoglobina.

Ha habido otros instrumentos más sencillos y para una primera aproximación, como el de Laboratorios Boehringer y el de Marucelli. Se hace una pequeña punción en el dedo, se extrae una pequeña cantidad de sangre con una pipeta; se deposita una gota en el círculo y se espera un tiempo. Luego se compara con la rueda de colores.

Aquí tenemos otro instrumento que nos mide la hemoglobina en sangre pero por el procedimiento de la espectrometría. Colorimetría es la técnica utilizada para determinar la concentración de una solución que tiene color. Mide la intensidad del color y relaciona la intensidad con la concentración de la muestra.

La espectrometría es un método científico que se utiliza para medir cuánta luz absorbe una sustancia química, midiendo la intensidad de la luz cuando un haz luminoso pasa a través de la solución muestra. También puede usarse para medir la cantidad de un producto químico conocido en una sustancia.

Fabricado por la Casa Hellige creada por Fritz Hellige en 1895. Consta de un visor, en la parte superior de un botón rojo, la escala regulable en el frontal y en la parte posterior el cajetín donde se inserta la muestra.

Este otro de la American Optical Company es el mismo que el anterior con alguna variación. El visor está a un lado; en el contrario está la conexión a la corriente; en la parte frontal las escalas regulables y en la cara posterior, el lugar donde se pone la muestra en esta especie de cajoncitos.

Volvemos al estudio de la orina. Aquí mostramos este estuche M.Moya. Con cada uno de estos reactivos podremos conocer la concentración de sustancias presentes como la glucosa, la acetona, etc.

Este otro utiliza 4 reactivos; dos de ellos para conocer la glucosa, otro para la albúmina y un último para la acetona (acidosis). En la tabla se indica el número de gotas de orina en la columna izquierda y los gramos de glucosa por litro en la columna de la derecha.

El Metrorin Barry sirve igualmente para determinar la albúmina, la glucosa y la acetona en orina. En el mismo se incluye un pequeño manual.

Por último éste sirve para hacer el test de azúcar en orina Sheftel, elaborado por Lilly and Company, Indianápolis. Las pastillas azules son de sulfato de cobre, las blancas de Metenamina. Igualmente se acompaña de un pequeño manual y de la escala de colores correspondiente,

Salvando la distancia en tiempo, viene a ser como éste actual, el COMBUR 5 HC, que nos mide varias cosas en orina: glucosa, leucocitos, nitritos, proteína, presencia de sangfre y de hemoglobina

También fueron apareciendo pruebas funcionales, exámenes clínicos rigurosamente estructurados para obtener información sobre el estado funcional del organismo o de alguna de sus partes cuando se les somete a una exigencia nueva y calculada.  Por ejemplo la exploración funcional del riñón tras ingestión de yoduro potásico, de azul de metileno, o de agua.

O  el examen de la capacidad funcional del diabético frente a los hidratos de carbono como la prueba de Külz, las pruebas de Naunyn y Strauss, o la de la “glucemia provocada” de Noorden y Rosenberg.

Siguieron otras pruebas funcionales renales, hepáticas, cardíacas, etc.

Lo mismo que sucedió con la forma de pensar o la mentalidad anatomoclínica que dio lugar a una nueva semiología, en este caso sucedió lo mismo. Así, capítulos de la patología actual se edifican sobre estos criterios: enfermedades de las glándulas de secreción interna, metabolismo y nutrición, etc.

Esta mentalidad condujo a la aparición de una nueva disciplina: la patología experimental o la investigación en los animales de experimentación de los procesos disfuncionales. Uno de sus creadores fue Ludwig Traube (1818-1876), amigo de Virchow y muy influido por los experimentalistas franceses Magendie y Claude Bernard. Éste último reunió valiosos trabajos en su Cours de pathologie expérimentale (1859).

El representante de la institucionalización de esta disciplina es Julius F. Conheim (1839-1884), discípulo de Virchow de quien modificó algunas de sus explicaciones sobre la inflamación mediante investigación.  Demostró que los leucocitos pueden salir de los vasos sanguíneos y aparecer en los focos inflamatorios. Fue autor de una Vorlesungen über allgemeine Pathologie (Leccions sobre patología general, 1877-80). En éstas ofreció una exposición del estudio científico de la enfermedad basada en supuestos fisiopatológicos y en los resultados de la patología experimental. Esta institucionalización también estuvo presente en los Archiv de Naunyn y Shmiedeberg. Hay que tener en cuenta que la farmacología también se benefició del enfoque fisiopatológico. Se crearon gran número de medicamentos que actuaban sobre síntomas y signos, aunque no sobre las causas.

En el próximo vídeo seguiremos hablando de la enfermedad desde el punto de vista de las funciones alteradas.

Bibliografía

–Bynum, WF et al (2006). The Western Medical Tradition 1800 to 2000. Cambridge, Czmbridge University Press

–Cámara de Neubauer. En Wikipedia. Disponible en https://es.wikipedia.org/wiki/C%C3%A1mara_de_Neubauer , Consultado el 2 de enero de 2021.

–Fresquet Febrer, J.L. (2009). William Ricahrd Gowers (1845-1915). En: Biografías y epónimos médicos. historiadelamedicina.org. Disponible en: https://www.historiadelamedicina.org/gowers.html Consultado el 2 de enero de 2021.

–Fresquet Febrer, J.L. (2010). Albuminómetro de Esbach. Museo de Historia de la Medicina y de la Ciencia. Material didáctico. Disponible en: https://www.uv.es/fresquet/Expo_medicina/Patologia_XIX/Albuminometro_de_Esbach.pdf Consultado el 2 de enero de 2021.

–Karl Bürker. En Wikipedia alemán. Disponible en https://de.wikipedia.org/wiki/Karl_Bürker , Consultado el 2 de enero de 2021.

–Laín Entralgo, P. (1978). Historia de la medicina. Barcelona, Salvat.

–López Piñero, J.M. (2010). Historia de la medicina universal. Valencia, Ajuntament de València.

–Obituario de Georges Hubert Esbach (1890). Br Med J, vol. 1, nº 1523, p. 577.

–Sánchez González, MA (2012). Medicina y humanidades médicas. 2ª ed., Barcelona, Elsevier

–Verso, ML (1971). Algunos pioneros de la hematología del siglo XIX. Medical History,, vol.15, nº 1, pp. 55-67.

Wunderlich y la termometría clínica

Subido un nuevo vídeo al canal Medicina, historia y sociedad, insertamos en este post la transcripción del anterior: Wunderlich y la termometría clínica.

“En el vídeo anterior hablábamos de la importancia de la lesión y de las alteraciones estructurales en patología. Sin embargo, esto solo nos proporciona información de la enfermedad en un determinado momento y en localizaciones concretas.

A lo largo de las primeras décadas del siglo XIX Alemania salía de un periodo en el que habían florecido los sistemas especulativos por la influencia de la llamada Naturphilosophie. La química y la física seguían proporcionando apoyo para la construcción de una patología científica. Ahora era necesario estudiar la enfermedad desde el punto dinámico.

Dos eran las posibilidades: investigar las alteraciones como procesos energéticos, estudiables por la física, y como procesos materiales, estudiables por la química.

Carl Reinhold August Wunderlich, hijo de alemán y francesa, fue uno de los primeros en adentrarse en el primer campo. Veamos cómo.

[INTRO]

Wunderlich nació en 1815 en Sulz, junto al Neckar (suroeste de Alemania). Su padre era médico y trabajó en salud pública. Falleció en 1824. Con su madre y su abuela se trasladó a Stuttgart donde finalizó sus estudios secundarios en 1833. Estudió después medicina en Tubingen –donde se ofrecía una enseñanza libresca– hasta 1837. Allí fue influenciado por Albert Frederich Schill (1812-1839), un profesor que había estado en Francia e Inglaterra, que le recomendó que aprendiera percusión y auscultación, lo que hizo durante tres viajes a Viena. Con otros dos renovadores (Wilhelm Roser (1817-1888) y Wilhelm Greisinger (1817-1868) fundó el el Archiv für Physiologische Heilkunde en 1842, donde clamó por una nueva medicina basada en la observación científica y en particular por la obra fisiológica de Johannes Müller (1801-1858). Uno de los artículos de la introducción llevaba el título “Sobre las deficiencias de la medicina alemana actual y sobre la necesidad de una firme orientación científica de la misma”, donde decía: ‘La medicina, como ciencia empírica e inductiva, tiene que vestir el mismo atavío y progresar con los mismos métodos que las ciencias físicas exactas… La medicina fisiológica, apoyándose en hechos comprobados, tiene que formular las leyes según las cuales el organismo vive y enferma, sana y perece’.

Estuvo un año en París donde aprendió especialmente de Pierre Charles A. Louis (1787-1872) y también de Louis D. Jules Gavarret (1809-1890), empirismo y estadística aplicada.

Regresó a Stuttgart donde presentó su tesis en 1838 sobre la nosología del tifus. De nuevo estancia en París y después, en 1840, se trasladó a Viena. Publicó un libro (Wien und Paris) en el que realiza un agudo análisis crítico en el que comparaba la medicina que se hacía en ese momento en Francia y la que se desarrollaba en el área germánica. París era para él el lugar más adecuado para formarse. También se refería al renacimiento de la escuela vienesa en torno a las figuras de Rokitansky y Skoda.

Habiéndose habilitado en 1839 como profesor en la Universidad de Tubinga, pasó por asistente y sustituto. En 1846 fue nombrado profesor ordinario de clínica médica. Hubo reacciones en contra por parte del profesorado conservador y tuvo que interceder por él el ministro de educación del reino de Württemberg.

En 1845 publicó Versuch einer pathologischen Physiologie des Blutes (1845) y al año siguiente comenzaron a ver la luz los tres volúmenes de su Handbuch der Pathologie und Therapie (1850-1852). El libro sobre la fisiopatología patológica de la sangre es una muestra de que Wunderlich hizo investigación experimental de laboratorio. El segundo indica que la fuente principal de su obra de investigación fue la observación y la exploración clínica.   

En 1850 Wunderlich aceptó una de las cátedras de más prestigio de Alemania, la de la Universidad de Leipzig. Allí estuvo a lo largo de veinticinco años durante los cuales publicó una Geschichte der Medizin (1858) y su obra central Das Verhalten der Eigenwärme in Krankheite (El comportamiento de de la temperatura corporal en las enfermedades) (1868). Convirtió su servicio del Jakobshospital en uno de los más importantes de Alemania. Dio clases de patología y terapéutica, de psiquiatría y también de historia de la medicina

Wunderlich culminó el grueso de su trabajo sobre termometría mientras estuvo en Leipzig. A lo largo de dieciocho años antes de publicar Das Verhalten der Eigenwärme in Krankheiten, recogió datos del examen clínico de más de veinticinco mil pacientes. Reunió miles y miles de registros de las lecturas de la temperatura. El análisis de estos datos produjo una veintena de trabajos sobre termometría además del libro.

El termómetro
Galileo ya utilizó el termoscopio que Sanctorius empleó con fines médicos. Varios médicos franceses y alemanes del siglo XIX se interesaron también por el termómetro. Sin embargo, el mérito de haber sentado de modo sistemático los fundamentos científicos de la termometría clínica es de Wunderlich, así como haber convertido el termómetro en un instrumento imprescindible de la práctica médica.

Aquí vemos distintos tipos de termómetros algunos muy antiguos. Muy recientemente se sustituyó el mercurio de los mismos. [Se muestran varios termómetros de diferentes épocas].

En el contexto de la mentalidad fisiopatológica Wunderlich se interesó por la fiebre, el signo más adecuado a una consideración energética y procesal. Buscó descubrir por vía experimental que las modificaciones de la temperatura en las enfermedades se hallan fundamentadas en una ley. 

Los principios de los que partió Wunderlich fueron: (a) la constancia de la temperatura en las personas sanas, y (b) la variación de la temperatura en la enfermedad. Recogió millones de registros, como hemos dicho. Trató de buscar regularidades en los trazados termométricos de las enfermedades. Los halló a pesar de que con frecuencia había variaciones que dependían de influencias accidentales. Por tanto, muchas especies morbosas se corresponden con tipos bien delimitados de temperaturas alteradas.

Wunderlich extrajo las curvas térmicas típicas del tifus abdominal, el tifus exantemático, la fiebre recurrente, el sarampión, la viruela, la neumonía, la escarlatina y el paludismo reciente. Otras eran relativamente típicas, como la de la septicemia, rubeola y varicela, erisipela, amigdalitis, meningitis, reumatismo agudo, pleuritis, etc.

El espectacular desarrollo de la microbiología en la segunda mitad del siglo XIX y la aparición de medicamentos eficaces contra las infecciones a principios del siglo XX oscurecieron de alguna manera la excelente labor de Wunderlich.

Mientras Wunderlich trabajó en el tema, el también alemán Justus von Liebig (1803-1873) acababa de descubrir que el calor animal se originaba en los procesos químicos orgánicos, especialmente en las oxidaciones. Por otro lado, los trabajos de Meyer, Joule y Helmholtz habían llevado a la formulación del primer principio de la termodinámica.

Wunderlich falleció cuatro años después que su hijo, en septiembre de 1877″.

Bibliografía
—Carl Reinhold August Wunderlich.En Whonamedit? Disponible en http://www.whonamedit.com/doctor. cfm/3266.html Consultado el 10 de diciembre de 2013.

—Carl Reinhold August Wunderlich und die Universitätsklinik St. Jakob. Historia de la Universidad de Leipzig. Disponible en: http://www.uni-leipzig. de/~agintern/uni600/ug174.htm Consultado el 12 de diciembre de 2013.

—Karl Reinhold August Wunderlich. En: Professo- renkatalog der Universität Leipzig. Catalogus pro- fessorum lipsiensium. Dispoible en: http://www. uni-leipzig.de/unigeschichte/professorenkatalog/ leipzig/Wunderlich_1307/ Consultado el 5 de dicie- mre de 2013.

—Diepgen, P. Historia de la Medicina. 2a ed., Barce- lona, Labor, 1932.

—Hess, V. Objektivität und Rhetorik: Karl August Wunderlich (1815–1877) und die klinische Thermo- metrie. Medizinhistorisches Journal, 1997; 32(3-4): 299-319.

—Korn, G. Wunderlich, Karl Reinhold August. In: Allgemeine Deutsche Biographie (ADB). Band 44, Duncker & Humblot, Leipzig 1898, S. 313 f.

—López Piñero, J.M. Patología y medicina interna. In- troducción general, Alemania, Francia, Gran Bretaña y España. En: Laín Entralgo, P. (dir). Historia Universal de la Medicina. Barcelona, Salvat, vol. 6, pp. 123-156.

—Mackowiak, P.A.; Wasserman, S.S.; Levine,M.M. A Critical Appraisal of 98.6°F, the Upper Limit of the Normal Body Temperature, and Other Legacies of Carl Reinhold August Wunderlich. JAMA. 1992; 268(12): 1578-1580.

–Mackowiak, P.A.; Worden, G. (1994). Carl Reinhold Wunderlich and the evolution of clinical thermometry. Clin. Infect. Dis., vol. 18, n1 3, pp. 458-467.

—Oon SF, Murphy M, Connolly SS. Wunderlich syndrome as the first manifestation of renal cell carcinoma”. Urology Journal, 2010; 7 (2): 129–32.

—Singer, Ch.; Underwood, E.A. Breve Historia de la Medicina con un apéndice sobre la Historia de la Medicina española por José M. López Piñero. Ma- drid, Guadarrama, 1966.

—Temkin, O. Wunderlich, Schelling and the His- tory of medicine, Gesnerus,1966; 23: 188-195. En: (1977)The double face of Janus, Baltimore, The Jo- hns Hopkins University Press,1977, pp. 246-251.